深度可分离卷积 Depthwise separable convolution

概要

在阅读FasterNet的过程中,提到了Depthwise Convolution(深度卷积),于是阅读了Xception的论文,对Depthwise Separable Convolution(深度可分离卷积)进行了学习理解。本文对于深度可分离卷积的理解来自Xception: Deep Learning with Depthwise Separable Convolutions这篇论文。

在本文章中,我用DSConv来表示Depthwise Separable Convolution。

DSConv由两部分组成:DepthWise Conv和PointWise Conv. 对这两个部分的解释我在本文下方给出了解释。

需要注意一点,Xception中的深度可分离卷积和传统的深度可分离卷积有细微区别,传统DwConv先对每个通道卷积,再对所有通道做1*1卷积,而Xception中的DwConv则是先对所有输入图像的所有通道进行1*1的卷积得到Feature Map,再由每个Kernel对1*1卷积的Outputs中的每个通道进行卷积,总结就是DepthWise Conv和PointWise Conv的顺序相反


上图是FasterNet中提到DwConv(深度卷积)的示意图

阅读Xception论文的记录:

概念

Inception是介于传统卷积和深度可分离卷积的中间形态

Xception彻底解耦为深度可分离卷积

不同卷积Kernel与Channel的关系

普通卷积中:一个Kernel处理所有Channel

深度可分离卷积:一个Kernel处理一个Channel

Inception模块中:一个Kernel处理的通道数可以调节,介于普通卷积和深度可分离卷积之间

性能优势

论文中提到,Xception的参数量和Inception V3相近,但由于采用了DSConv可以减少大量参数量和计算量,减少模型大小(关于计算/参数量为什么减少详细见MobileNet论文)

DwConv卷积介绍

深度可分离卷积示意图

在深度可分离卷积当中,包含两个步骤Dethpwise Conv和Pointwise Conv,针对每一个Channel,采用一个Kernel进行卷积操作,该操作只对长宽方向的信息(每一个通道平面)进行处理。

但是若只处理长宽方向信息会造成信息丢失,为了补充跨通道信息,用1*1卷积,对跨通道维度进行处理,得到一个新的feature map,有多少个1*1卷积核,就得到多少个channel的feature map,这里只用了一个,所以只得到了一个feature map。红色感受野与紫色卷积核对应位置权重相乘(点乘)求和,填在feature map对应位置上。

Dethpwise Conv 处理长宽方向的空间信息,Pointwise Conv 1*1卷积处理跨通道的信息,这样就把两种信息解耦了。

若您不知道什么是卷积,下面是补充知识,为您展示了普通卷积的过程

input中绿色感受野与卷积核对应位置权重相乘(点乘)求和示意图

Group Convolution(组卷积)/Depthwise Convolution(深度卷积)示意图

参考论文地址:

Xception:https://arxiv.org/abs/1610.02357

FasterNet:https://arxiv.org/abs/2303.03667

参考学习地址:

https://www.bilibili.com/video/BV1Gb4y1m7e3?p=2&vd_source=aed42df4b6ffa54b23d443fb8f0ecd1b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值