深度可分离卷积 Depthwise separable convolution

概要

在阅读FasterNet的过程中,提到了Depthwise Convolution(深度卷积),于是阅读了Xception的论文,对Depthwise Separable Convolution(深度可分离卷积)进行了学习理解。本文对于深度可分离卷积的理解来自Xception: Deep Learning with Depthwise Separable Convolutions这篇论文。

在本文章中,我用DSConv来表示Depthwise Separable Convolution。

DSConv由两部分组成:DepthWise Conv和PointWise Conv. 对这两个部分的解释我在本文下方给出了解释。

需要注意一点,Xception中的深度可分离卷积和传统的深度可分离卷积有细微区别,传统DwConv先对每个通道卷积,再对所有通道做1*1卷积,而Xception中的DwConv则是先对所有输入图像的所有通道进行1*1的卷积得到Feature Map,再由每个Kernel对1*1卷积的Outputs中的每个通道进行卷积,总结就是DepthWise Conv和PointWise Conv的顺序相反


上图是FasterNet中提到DwConv(深度卷积)的示意图

阅读Xception论文的记录:

概念

Inception是介于传统卷积和深度可分离卷积的中间形态

Xception彻底解耦为深度可分离卷积

不同卷积Kernel与Channel的关系

普通卷积中:一个Kernel处理所有Channel

深度可分离卷积:一个Kernel处理一个Channel

Inception模块中:一个Kernel处理的通道数可以调节,介于普通卷积和深度可分离卷积之间

性能优势

论文中提到,Xception的参数量和Inception V3相近,但由于采用了DSConv可以减少大量参数量和计算量,减少模型大小(关于计算/参数量为什么减少详细见MobileNet论文)

DwConv卷积介绍

深度可分离卷积示意图

在深度可分离卷积当中,包含两个步骤Dethpwise Conv和Pointwise Conv,针对每一个Channel,采用一个Kernel进行卷积操作,该操作只对长宽方向的信息(每一个通道平面)进行处理。

但是若只处理长宽方向信息会造成信息丢失,为了补充跨通道信息,用1*1卷积,对跨通道维度进行处理,得到一个新的feature map,有多少个1*1卷积核,就得到多少个channel的feature map,这里只用了一个,所以只得到了一个feature map。红色感受野与紫色卷积核对应位置权重相乘(点乘)求和,填在feature map对应位置上。

Dethpwise Conv 处理长宽方向的空间信息,Pointwise Conv 1*1卷积处理跨通道的信息,这样就把两种信息解耦了。

若您不知道什么是卷积,下面是补充知识,为您展示了普通卷积的过程

input中绿色感受野与卷积核对应位置权重相乘(点乘)求和示意图

Group Convolution(组卷积)/Depthwise Convolution(深度卷积)示意图

参考论文地址:

Xception:https://arxiv.org/abs/1610.02357

FasterNet:https://arxiv.org/abs/2303.03667

参考学习地址:

https://www.bilibili.com/video/BV1Gb4y1m7e3?p=2&vd_source=aed42df4b6ffa54b23d443fb8f0ecd1b

  • 26
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 深度分离(Depthwise Separable Convolution)是一种卷方式,它将卷操作分为两步来进行:深度和点卷。其中,深度对于每个输入通道分别做卷,而点卷则将各个输入通道的卷结果按照权值线性组合。这样可以减少参数量,加速计算,并且能够在保持精度的前提下压缩模型。 ### 回答2: Depthwise separable convolution深度分离)是一种轻量级的卷操作,它可以有效降低模型的参数量和计算量,从而实现更加高效的模型训练和推理。 相比于传统的卷操作,depthwise separable convolution 由两个步骤构成:depthwise convolution深度)和pointwise convolution(逐点卷)。具体来说,先对输入的每个通道单独进行卷操作(即深度),然后再通过逐点卷来将各个通道的特征进行整合,最终得到输出结果。 对于一个用于目标识别的卷网络来说,depthwise separable convolution 的主要优势在于它能够显著减少网络中的参数量和计算量。由于在进行深度时,每个通道都是单独进行处理,所以会大幅降低计算量和计算时间。而逐点卷则可以有效压缩卷层的通道数,从而降低参数量和内存占用。 举个例子,假设对于一个输入大小为H×W×C的图像,原本需要使用大小为K×K×C×S的卷核来进行卷操作,其中S表示输出通道数目。那么使用 depthwise separable convolution 进行操作时,先使用大小为K×K×C的卷核进行深度(相当于使用了C个大小为K×K的卷核),然后通过大小为1×1×CS的卷核进行逐点卷。这样,在输出相同结果的情况下,参数量和计算量就能大幅降低,从而加速模型的训练和推理。 总之,depthwise separable convolution 是一种轻量级的卷操作,可以有效压缩模型的参数量和计算量,提高模型的计算效率。在目标识别等领域,可以作为一种强大的工具,用于设计更加高效的卷神经网络。 ### 回答3: Depthwise separable convolution深度分离)是一种卷神经网络(CNN)中用于减少网络参数个数和计算量的结构。它是由谷歌的研究者提出的一种卷结构,并在MobileNet中得到广泛应用。 普通的卷神经网络是由卷层、池化层和全连接层组成。其中,卷层是网络中最消耗时间和空间的部分,需要大量的计算资源。深度分离是一种卷结构,通过分离的过程,将卷操作分为两个部分:深度和逐点卷。 首先,深度只在每个输入通道上进行卷操作,而不是在所有输入通道上同时进行。这样可以减少卷核的数量。其次,逐点卷使用1x1的卷核,对每个通道分别进行卷操作。这可以将通道之间的相互影响降到最低。 因为这种分离深度分离可以明显降低计算量和模型参数,能够在保证模型精度的情况下,让模型具有更小的体和更高的运行速度。相比于普通的卷神经网络,深度分离具有更好的效率和性能。 深度分离的应用可以广泛用于移动端设备、无线网络等资源有限的环境中。它在现代机器学习使用中得到了广泛的应用,包括在计算机视觉领域(如图像识别、物体检测)和语音处理领域(如语音识别)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值