最近在读faster-rcnn的代码,感觉理解透还是比较难的,需要将思路整理一下。下面将简单梳理一下nms部分的代码思路。
代码如下:
import numpy as np
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
# 所有图片的坐标信息,字典形式储存??
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1) # 计算出所有图片的面积
order = scores.argsort()[::-1] # 图片评分按升序排序
keep = [] # 用来存放最后保留的图片的相应评分
while order.size > 0:
i = order[0] # i 是还未处理的图片中的最大评分
keep.append(i) # 保留改图片的值
# 矩阵操作,下面计算的是图片i分别与其余图片相交的矩形的坐标
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.ma

本文深入解析faster-rcnn中非极大值抑制(NMS)的代码实现,帮助读者理解这一关键步骤在目标检测中的作用。
最低0.47元/天 解锁文章
34

被折叠的 条评论
为什么被折叠?



