【目标检测】NMS算法的理论讲解

本文介绍了NMS(Non-MaximumSuppression)算法,用于处理多框检测中同一物体的冗余检测框。步骤包括:根据置信度和IOU阈值筛选预测框,按置信度排序,通过while循环逐个比较并移除IoU超过阈值的冗余框。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将NMS就必须先讲IOU,
在这里插入图片描述
IOU就是交并比,两个检测框的交集除以两个检测框的并集就是IOU

为什么要做NMS操作,因为要去除同一个物体的多的冗余检测框
在这里插入图片描述

那么NMS算法是如何做的呢?
在这里插入图片描述
以上是算法的流程图
下面讲解算法的流程
首先输入是预测框的集合B,置信度分数S,IoU的阈值 τ \tau τ,以及置信度的阈值T
①首先我们创建一个过滤后的检测框的集合F
将这个集合设为空集进行初始

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子-Alex

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值