池化层(pooling)的反向传播是怎么实现的

在看卷积神经网络的时候,突然想起来池化是会改变特征图的尺寸的,那反向传播是怎么实现的呢。于是搜了一些博客,感觉上面这个博客写得最清晰直观,就从这个博客里面搬了点东西过来作为笔记。
Pooling池化操作的反向梯度传播
CNN网络中另外一个不可导的环节就是Pooling池化操作,因为Pooling操作使得feature map的尺寸变化,假如做2×2的池化,假设那么第l+1层的feature map有16个梯度,那么第l层就会有64个梯度,这使得梯度无法对位的进行传播下去。其实解决这个问题的思想也很简单,就是把1个像素的梯度传递给4个像素,但是 需要保证传递的loss(或者梯度)总和不变 。根据这条原则,mean pooling和max pooling的反向传播也是不同的。
1、mean pooling
mean pooling的前向传播就是把一个patch中的值求取平均来做pooling,那么反向传播的过程也就是把某个元素的梯度等分为n份分配给前一层,这样就保证池化前后的梯度(残差)之和保持不变,还是比较理解的,图示如下 :

mean pooling比较容易让人理解错的地方就是会简单的认为直接把梯度复制N遍之后直接反向传播回去,但是这样会造成loss之和变为原来的N倍,网络是会产生梯度爆炸的。
2、max pooling
max pooling也要满足梯度之和不变的原则 ,max pooling的前向传播是把patch中最大的值传递给后一层,而其他像素的值直接被舍弃掉。那么反向传播也就是 把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0 。所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大,也就是max id ,这个变量就是记录最大值所在位置的,因为在反向传播中要用到,那么假设前向传播和反向传播的过程就如下图所示 :


### 池化层在神经网络中的梯度反向传播 池化层Pooling Layer)的主要功能是对输入数据进行降采样,从而减少计算量并提取主要特征。尽管池化操作本身不涉及可学习参数,但在训练过程中仍然需要通过反向传播来传递误差信号到前一层。 #### 原理概述 在正向传播阶段,池化层通常执行最大池化(Max Pooling)或平均池化(Average Pooling)。对于这两种方式,在反向传播时的梯度计算有所不同: - **最大池化**:仅将梯度传递给产生最大值的那个位置。这是因为只有该位置对最终输出有贡献。 - **平均池化**:将梯度均匀分配给所有参与池化的单元格[^1]。 具体来说,假设我们有一个大小为 \(k \times k\) 的窗口,并步幅为 \(s\) 进行池化,则每个窗口内的局部区域会根据上述规则更新其对应的梯度。 #### 实现细节 以下是基于Python和NumPy的一个简单实现例子展示如何完成最大池化的反向传播过程: ```python def max_pool_backward(dout, cache): """ A naive implementation of the backward pass for a max pooling layer. Inputs: - dout: Upstream derivatives - cache: Tuple (x, pool_param) where x is input data and pool_param includes 'pool_height', 'pool_width' and 'stride' Returns: - dx: Gradient with respect to x """ x, pool_param = cache N, C, H, W = x.shape pool_height, pool_width, stride = pool_param['pool_height'], pool_param['pool_width'], pool_param['stride'] out_H = int(1 + (H - pool_height) / stride) out_W = int(1 + (W - pool_width) / stride) dx = np.zeros_like(x) for n in range(N): # For each sample in batch for c in range(C): # For each channel for i in range(out_H): # Iterate over height index of output matrix for j in range(out_W): # Iterate over width index of output matrix h_start = i * stride w_start = j * stride window = x[n, c, h_start:h_start+pool_height, w_start:w_start+pool_width] mask = (window == np.max(window)) # Create boolean mask indicating which element was maximum dx[n, c, h_start:h_start+pool_height, w_start:w_start+pool_width] += \ mask * dout[n, c, i, j] return dx ``` 此函数接收来自上一层的导数`dout`以及缓存信息`cache`(包含原始输入张量及其配置参数),并通过重建掩码的方式定位哪些像素对应于最大值的位置以便正确地重新分布梯度[^2]。 #### 总结 通过对不同类型的池化算法的理解可以发现它们各自独特的特性影响着整个模型的表现形式;而在实际应用当中选择合适的策略往往取决于具体的场景需求[^3]。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值