海洋中常用数据集及对应网址

海洋中的常用数据集,主要用于模式地形、初始场、边界条件、强迫场和同化资料等,大多数数据都是可以从网上下载和使用的。当然模式的同化验证还少不了现场观测资料。

水深地形
ETOPO1 https://www.ngdc.noaa.gov/mgg/global/
ETOPO5 https://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
GEBCO https://www.gebco.net/

海洋再分析资料
HYCOM https://www.hycom.org/dataserver/gofs-3pt1/reanalysis

气候态温盐数据集
GDEM https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:9600094
WOA https://rda.ucar.edu/datasets/ds285.0/
WOA2013 有两套分辨率1度深度57层,最大1500米
0.25度102层,最大5500米
经向1440个格点,-179.875:0.25:179.875
纬向720个格点,-89.875:0.25:89.875
大气强迫场和背景场
COADS https://icoads.noaa.gov/data.icoads.html
https://rda.ucar.edu/datasets/ds548.0/
ERA-Interim https://rda.ucar.edu/datasets/ds627.2/
NCEP reanalysis https://rda.ucar.edu/datasets/ds090.0/index.html
GFS https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs

卫星资料
AVISO SSH
https://climatedataguide.ucar.edu/climate-data/aviso-satellite-derived-sea-surface-height-above-geoid
AVHRR SST
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:AVHRR_Pathfinder-NCEI-L3C-v5.3

Argo 浮标 http://www.argo.net/

其中可以看到有很多资料都可以从NCAR的Research Data Archive 找到https://rda.ucar.edu/datasets/,尤其大气方面的数据集,输入数据集名称可以直接搜索,信息很详细,注册账号后可以下载,非常方便。

<think>嗯,用户想找与海洋贝类相关的数据集。首先,我需要确定用户的需求到底是什么。海洋贝类可能包括很多种类,比如蛤蜊、牡蛎、扇贝等等。用户可能需要的是图像数据集,用于目标检测或分类,或者是生态学相关的数据集,比如分布、数量等数据。 接下来,我应该回忆一下常用的公开数据集。比如,Open Images Dataset V6有大量的目标检测数据,里面可能有贝类的标注。根据引用[2],它提到目标检测数据集中有600个类别,可能包含贝类。引用[1]中的class-descriptions.csv可能有对应的MID名称,比如/m/0pcr是Alpaca,但可能还有其他类别。用户需要检查这些MID对应的名称是否有贝类相关。 另外,Kaggle是一个常见的数据集平台,可能有用户上传的海洋生物数据集。比如搜索“marine shellfish”或“shellfish species”可能会有结果。需要建议用户去Kaggle查找,并给出具体的关键词。 还有GBIF是全球生物多样性信息机构,提供物种分布数据,这对生态研究可能有用。用户如果做的是分布或生态学分析,GBIF的数据可能更合适。建议用户访问GBIF官网,搜索贝类的学名,比如Bivalvia(双壳类)。 另外,学术论文中的数据集也是一个来源,比如在Google Scholar搜索相关论文,作者有时会公开数据集。用户可以查找近年的研究,看看是否有可用的数据。 需要提醒用户注意数据集的授权和用途是否符合他们的需求,比如商业或非商业用途,数据质量,标注的准确性等。比如Open Images Dataset的数据是否足够详细,或者是否需要更专业的标注。 最后,可能需要组合多个数据集,或者自己标注数据。如果现有数据集不够,建议用户使用爬虫工具收集图片,然后用LabelImg等工具标注,但这需要时间和资源。 总结下来,可能的步骤是:1. 检查Open Images Dataset的类别是否有贝类;2. 搜索Kaggle和GBIF;3. 查阅学术论文;4. 考虑自行收集和标注。同时,注意数据的授权和质量问题。</think>以下是关于海洋贝类数据集的建议方案: ### 一、现有公开数据集推荐 1. **Open Images Dataset V6** 该数据集包含190万图片和1600万个边界框标注,覆盖600个类别。根据class-descriptions.csv文件,可查找与贝类相关的MID编码(如Bivalvia类)[^2]。 ``` 示例路径:/m/0pcr,Alpaca # 需查找类似/m/xxx,Bivalve的条目 ``` 2. **Kaggle海洋生物数据集** 建议搜索关键词: ```python "marine bivalves detection" "shellfish species classification" ``` 部分相关数据集可能需要通过学术授权获取[^3]。 3. **GBIF生物多样性数据库** 包含全球贝类分布数据,支持拉丁学名检索: $$ \text{https://www.gbif.org/species/search?q=Bivalvia} $$ ### 二、构建自定义数据集方法 1. 图像采集:使用`scrapy`爬虫框架抓取Flickr等平台的CC协议图片 ```python import scrapy class MarineSpider(scrapy.Spider): name = 'shellfish' start_urls = ['https://www.flickr.com/search/?text=marine%20bivalvia'] ``` 2. 标注工具推荐: - LabelImg(本地标注) - CVAT(在线协作标注) ### 三、关键注意事项 | 维度 | 说明 | |------------|---------------------------| | 数据量 | 建议单类>500张(检测任务)| | 标注格式 | COCO/YOLO格式兼容性最佳 | | 分辨率 | 不低于1024×768像素 |
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值