指数族分布和广义线性模型

本文将首先简单介绍指数族分布,然后介绍一下广义线性模型(generalized linear model, GLM), 最后解释了为什么逻辑回归(logistic regression, LR) 是广义线性模型的一种。

指数族分布

指数族分布 (The exponential family distribution),区别于指数分布(exponential distribution)。在概率统计中,若某概率分布满足下式,我们就称之属于指数族分布。

p(y;η)=b(y)exp(ηTT(y)a(η))

其中η的指数族分布.
统计中很多熟悉的概率分布都是指数族分布的特定形式,如伯努利分布,高斯分布,多项分布(multionmal), 泊松分布等。下面介绍其中的伯努利分布和高斯分布。

  • 伯努利分布
    p(y;ϕ)=ϕy(1ϕ)1y=exp[ylogϕ+(1y)log(1ϕ)]=exp[ylogϕ1ϕ+log(1ϕ)]

    把伯努利分布可以写成指数族分布的形式,且
    T(y)=yη=logϕ1ϕa(η)=log(1ϕ)=log(1+eη)b(y)=1

    同时我们可以看到ϕ=11+eη, 居然是logistic sigmoid的形式,后面在讨论LR是广义线性模型时,也会用到。

高斯分布

高斯分布也可以写为指数族分布的形式如下:

p(y;μ)=12π−−√exp(12(yμ)2)=12π−−√exp(12y2)exp(μy12μ2)
p(y;\mu) =\frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}(y-\mu)^2) \\

我们假设方差为1,当然不为1的时候也是可以推导的。上述我们就把高斯分布写为了指数族分布的形式,对应的

η=μT(y)=ya(η)=μ2/2=η2/2b(y)=12π−−√exp(12y2)
\eta = \mu \\ T(y) = y \\ a(\eta) = \mu^2/2 = \eta^2 /2 \\

广义线性模型 (Generalized linear model, GLM)

本节将讲述广义线性模型的概念,以及LR,最小二乘为何也属于广义线性模型。

考虑一个分类或回归问题,我们就是想预测某个随机变量y的函数。为了推导广义线性模式,我们必须做出如下三个假设

  1. p(y|x;θ) 服从指数族分布
  2. 给了x
  3. 参数η

在这三个假设(也可以理解为一种设计)的前提下,我们可以推导出一系列学习算法,称之为广义线性模型(GLM)。下面我们可以推导出一系列算法,称之为广义线性模型GLM. 下面举两个例子:

最小二乘法

假设p(y|x;θ)N(μ,σ2),那么

hθ(x)=E[y|x;θ]=μ=η=θTx
h_\theta(x) = E[y|x;\theta] \\ =\mu \\ =\eta \\
第一行因为假设2,第二行因为高斯分布的特点,第三行根据上面高斯分布为指数族分布的推导,第四行因为假设3

逻辑回归 LR

考虑LR二分类问题,y0,1),即服从伯努利分布。那么

hθ(x)=E[y|x;θ]=ϕ=11+eη=11+eθTx
h_\theta(x) = E[y|x;\theta] \\ =\phi \\ =\frac{1}{1+e^{-\eta}} \\
第一行因为假设2,第二行因为伯努利分布的性质,第三行因为伯努利分布为指数族分布时的推导,第四行因为假设3.

所以我们终于知道逻辑回归LR的P(y=1|x)=11+eθTx从何而来了。它即是在伯努利分布和广义线性模型的假设下推导而来,逻辑回归也自然是一种广义线性模型。

参考:
本文主要参加Andrew ng的机器学习讲义


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值