指数分布族(The Exponential Family)与广义线性回归(Generalized Linear Model GLM)

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

在各种算法相关的paper中,经常看到指数分布族这个概念。博主作为一个好奇心很强喜欢打破砂锅问到底的人,看到一个东西老在眼前晃来晃去却又似懂非懂,心里非常难受,于是想好好了解一下这个指数分布族到底是个什么鬼。。。

1.指数分布族的概念

指数分布族是指可以表示为指数形式的概率分布。wiki上的定义如下:
A single-parameter exponential family is a set of probability distributions whose probability density function (or probability mass function, for the case of a discrete distribution) can be expressed in the form
f X ( x ∣ θ ) = h ( x ) exp ⁡ ( η ( θ ) ⋅ T ( x ) − A ( θ ) ) f_X(x\mid\theta) = h(x) \exp \left (\eta(\theta) \cdot T(x) -A(\theta)\right ) fX(xθ)=h(x)exp(η(θ)T(x)A(θ))

其中, η \eta η为自然参数(nature parameter), T ( x ) T(x) T(x)是充分统计量(sufficient statistic)。当参数A,h,T都固定以后,就定义了一个以 η \eta η为参数的函数族。

2.其他常见分布于指数分布族的关系

2.1 伯努利分布

伯努利分布是对0,1分布的问题进行建模。对于 B e r n o u l i ( φ ) , y ∈ { 0 , 1 } Bernouli(\varphi),y\in\{0,1\} Bernouli(φ),y{0,1},其概率密度函数如下:
{ p ( y = 1 ; φ ) = φ p ( y = 1 ; φ ) = φ \begin{cases} p(y=1;\varphi) = \varphi \\ p(y=1;\varphi) = \varphi \end{cases} {p(y=1;φ)=φp(y=1;φ)=φ

将其华为指数分布族的形式:
KaTeX parse error: No such environment: align at position 7: \begin{̲a̲l̲i̲g̲n̲}̲ P(y,\varphi) &…

将上面转化以后的表达式与指数分布族对比,可以看出:
h ( y ) = 1 h(y) = 1 h(y)=1 T ( y ) = y T(y) = y T(y)=y η = l o g φ 1 − φ \eta=log\frac{\varphi}{1-\varphi} η=log1φφ φ = 1 1 + e − η \varphi=\frac{1}{1+e^{-\eta}} φ=1+eη1 A ( η ) = − l o g ( 1 − φ ) A(\eta)=-log(1-\varphi) A(η)=log(1φ)

由此可见,伯努利分布也是指数分布族的一种。细心的小伙伴发现了, θ \theta θ的形式与logistic函数的形式一致。(logistic函数的详解请参考 http://blog.csdn.net/bitcarmanlee/article/details/51154481)。这是因为 logistic模型对问题的前置概率估计其实就是伯努利分布。(貌似没有特别理解,以后再来慢慢琢磨)

2.2高斯分布(正态分布)

关于高斯分布的来龙去脉,足足可以写厚厚一本书。后面有时间回来详细整理高斯分布的相关资料。
关于高斯分布的详细推导过程如下(为了方便起见,将方差 σ \sigma σ设为1):
KaTeX parse error: No such environment: align at position 7: \begin{̲a̲l̲i̲g̲n̲}̲ N(\mu,1) & = \…

将其与指数分布族对比,可知:
h ( y ) = 1 2 π e x p ( − 1 2 y 2 ) h(y) = \frac{1}{\sqrt{2\pi}} exp\left(-\frac{1}{2}y^2\right) h(y)=2π 1exp(21y2) T ( y ) = y T(y) = y T(y)=y η = μ \eta = \mu η=μ A ( η ) = 1 2 μ 2 A(\eta) = \frac{1}{2}\mu ^2 A(η)=21μ2

伯努利分布与高斯分布是两个典型的指数分布族

3.广义线性模型(Generalized Linear Model GLM)

通过上面两个例子我们可以看出,在伯努利的指数分布族形式中, θ \theta θ 与伯努利分布中的参数 φ \varphi φ是一个logistic函数。而在高斯分布的指数分布族形式中, θ \theta θ是与 μ \mu μ相等的一个 表达式 (前提是我们假设了 σ = 1 \sigma=1 σ=1)。通过以上的例子, θ \theta θ以不同的映射函数与其它概率分布函数中的参数发生联系,从而得到不同的模型,广义线性模型正是将指数分布族中的所有成员(每个成员正好有一个这样的联系)都作为线性模型的扩展,通过各种非线性的连接函数将线性函数映射到其他空间,从而大大扩大了线性模型可解决的问题。

下面我们看 GLM 的形式化定义,GLM 有三个假设:

(1) y ∣ x ; θ E x p o n e n t i a l F a m i l y ( θ ) y|x;θ ExponentialFamily(\theta) yx;θExponentialFamily(θ) 给定样本 x x x与参数 θ \theta θ,样本分类 y y y 服从指数分布族中的某个分布;
(2) 给定一个 x x x,我们需要的目标函数为 h ( θ ( x ) ) = E [ T ( y ) ∣ x ] h(\theta(x))=E[T(y)|x] h(θ(x))=E[T(y)x];
(3) η = θ T x \eta=\theta^Tx η=θTx

根据伯努利分布推导logistic模型的过程如下:
KaTeX parse error: No such environment: align at position 7: \begin{̲a̲l̲i̲g̲n̲}̲ h_\theta(x) & …

总之,广义线性模型通过拟合响应变量的条件均值的一个函数(不是响应变量的条件均值),并假设响应变量服从指数分布族中的某个分布(不限于正态分布),从而极大地扩展了标准线性模型。模型参数估计的推导依据是极大似然估计,而非最小二乘法。

本博文主要参考了以下内容,感谢大牛们的无私分享:
http://www.aliog.com/83492.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值