24年最新Stable Diffusion WebUI从入门到精通教程!

前言

第三十六部分 NVIDIA TensorRT:SD WebUI的终极加速插件

NVIDIA TensorRT是 NVIDIA 提供的一套工具和库,用于增强 TensorRT 的功能和灵活性,使开发者能够更好地优化和部署深度学习模型。它是一个高性能的深度学习推理优化器和运行时库,专门用于加速在 NVIDIA GPU 上运行的推理任务。TensorRT 扩展则提供了额外的自定义选项和高级功能,帮助开发者实现更加精细的优化和硬件加速。通过利用 NVIDIA TensorRT 扩展,Stable Diffusion 的模型可以在推理时显著加速,这使得它在实时应用或大规模生成任务中变得更加实用。因此,TensorRT 扩展插件被认为是 Stable Diffusion 的“终极加速插件”,因为它能够将图像生成过程中的性能提升到一个新的高度。

36.1 安装与配置

**NVIDIA TensorRT扩展的配置要求:**Nvidia显卡(至少8G显存)、16G以上内存、Nvidia驱动程序(537.58版本以上)

驱动安装和更新:

选择你显卡的具体型号和操作系统版本即可。

如果你是游戏玩家你可以选择下载安装GeForce Game Ready驱动程序;如果你像我一样只是用于工作和AI,那下载安装NVIDIA Studio驱动程序就可以了。

接下来是安装Stable-Diffusion-WebUI-TensorRT插件

项目

我们也可以直接通过启动器来安装,搜索TensorRT后安装即可。

安装完成后便能在WebUI中看到TensorRT的标签了。

36.2 基本使用方法

在TensorRT界面的右侧有关于这个插件详细的使用说明,你可以通过它来构建一个定制化的TensorRT加速引擎。

但最简单的,我们直接点击"导出默认引擎",等待片刻即可。

等待时间取决于你的网速,一般在5-10分钟,构建成功后,便能在WebUI中看到成功的提示。

然后来到"设置-SD-SD"中,刷新"SD Unet"便能看到刚才根据我们所选大模型构建成功的Unet,点击选择它后保存设置即可。

但一旦我们构建了多个引擎之后,每次来这里设置选择很麻烦,所以我们需要将这个界面显示出来。到"设置-用户界面-用户界面"中,在右侧的"快捷设置列表中"输入"sd_unet"后添加并保存。

重载UI后,便能在主界面中方便的选择构建好的引擎了。

然后便可以在生图时候加载和大模型匹配的引擎了,如果你是用默认的方式构建的引擎,它自动构建的生图尺寸范围支持512-768,所以建议尺寸不要大于768*768,批次数量不大于4。另外由于TensorRT插件在加速生图的同时会消耗更多的显存,所以如果你的显卡是8G或以下,构建引擎时候选择默认就行了,因为想生成高于768分辨率的图你的显卡显存也不够。

可以看一下没开TensorRT和开了TensorRT生图速度对比。

36.3 TensorRT自定义引擎

我们默认的引擎预设可以生成512-768分辨率的图片,但如果我们需要加速生成更多的尺寸,就需要进行自定义引擎的设置。

在预设的下拉菜单中,我们可以看到可以选择固定尺寸或具体尺寸范围,选择尺寸便可以让TensorRT在具体某一个尺寸上进行出图速度优化,512、768、1024分别代表SD1.5、2.1、XL模型的最佳绘制尺寸。如果想要出图效率更高可以选择固定尺寸的引擎,如果想要更灵活的出图则可以选择具体范围尺寸的引擎。

具体的尺寸等参数可以在我们选择后具体调配,这里需要说明的是我们可以同时构建多个引擎,比如一个动态引擎和一个静态引擎,当我们生图时候,它会自动为我们选择使用某一个引擎,但默认来说是不能构建两个静态引擎或两个动态引擎,除非你勾选最下面的强制选项。

由于我们在大量跑图时会加大显存的压力,所以我们也可以在启动时候开启xFormers来尝试减少显存的使用。

除了普通生图可以加速外,也可以使用TensorRT来加速高分辨率修复,比如你要把512*512的图高分辨率修复到1024*1024,那你就在构建完512的引擎后再强制构建一个1024的引擎,构建完后你在TensorTR界面的最下方展开你的模型可以看到该模型下有两个TRT引擎了,当你使用该模型的TRT引擎时候,它变会在第一次生成512分辨率的图的时候使用512引擎加速,在高分辨率修复的时候自动使用1024引擎加速。

另外,TensorRT还支持LoRA模型加速,切换到TensorRT LoRA选项卡,构建方法和之前的方法一致,构建完成后就相当于把LoRA融入进了大模型中一起加速。

我们通过TensorRT生成的引擎相关的文件都保存在,SD WebUI根目录models文件夹下的"Unet-onnx"和"Unet-trt"文件夹内,大家在不需要或者卸载后需要删除引擎的画记得到这两个文件夹内来清理。


这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

### Stable Diffusion WebUI入门教程 #### 一、下载与安装 为了开始使用Stable Diffusion WebUI (AUTOMATIC1111),需先完成软件的下载和安装过程。该工具不仅支持常见的NVIDIA GPU,还能够在Intel CPU以及集成/独立GPU上运行,这得益于Intel分发的OpenVINO工具包的支持[^2]。 #### 二、初步探索界面布局 启动程序后,用户会面对一个直观而复杂的图形化界面。此界面专为满足高级用户的图像生成需求所设计,提供了一系列强大且灵活的功能选项。对于初学者而言,建议按照官方提供的详细使用指南逐步学习各个部分的操作方式[^1]。 #### 三、创建第一个项目 当环境搭建完毕之后,就可以尝试创建自己的首个作品了。此时应该参照具体的实例来练习不同参数下的效果变化,从而加深对各项设定的理解程度。例如,在处理非首次生成的情况下启用色彩校正功能可以帮助改善颜色表现力,防止出现过度褪色的情况[^4]。 #### 四、深入挖掘特性 随着技能水平逐渐提高,可以进一步探究更多进阶特性和优化策略。比如调整采样器类型、迭代次数等核心参数;利用LoRA模型扩展创造力边界;或是借助第三方插件实现个性化定制等功能。这些都将有助于提升最终产出的质量并开拓新的创作可能性。 ```python # Python脚本用于自动化某些任务或批量处理图片 import gradio as gd from modules import script_callbacks, shared def custom_function(image_input): # 自定义逻辑... pass script_callbacks.on_after_component(custom_function) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值