打开各大厂算法岗招聘页面,“具备竞赛经验优先” 的要求屡见不鲜。
在科技行业,Kaggle 竞赛成绩已成为数据科学家和 AI 工程师求职时的 “硬通货”。谷歌、微软、Meta 等大厂在招聘数据相关岗位时,常将 Kaggle 排名、Kernel 质量、竞赛成果作为核心筛选标准。
Kaggle能干什么?
Kaggle比赛可以分为以下五类:
学生群体
-
入门小白:如果你是刚入门的初学者,或许你已经学习了一堆理论知识但是一身本领却无处可施展,那么你可以选择入门级赛题帮助你快速熟悉如何cover一个完整项目,这时你将超越70%同级别人群。
-
学术研究党:Kaggle的赛题可以作为你的毕业设计或者论文的素材,或许某个赛题就会给你的选题带来灵感,因为这里有部分赛题是企业在某些领域遇到了难题,通过在Kaggle上举办比赛吸引更多参赛者给出不同的方案。
职场人群
-
求职者:简历不够吸引人,用竞赛拉开差距;学校所学面对企业项目时往往失效,通过参加比赛,快速积累工业级解决方案经验;通过组队比赛,学会分工合作等软技能。
-
在职提升者:某个领域不熟,可通过相关赛题倒逼自己掌握知识;真实业务不敢轻易尝试,可在竞赛中低成本验证。
快速熟悉 Kaggle
既然如此,下面我将先带领大家快速熟悉kaggle,绝不让大家的学习之路卡在第一步!
注册
首先进入到主页之后,我们可以点击右上角Register快速注册一个账号。
然后跳转登录界面,这里选择【Register with Email】(更适合中国宝宝)。
这里正常填写邮箱、密码、名字即可next。
这里记得先按【Resend email】再填写邮箱中的验证码即注册完成!
竞赛
注册完成后,点击左侧栏的【competitions】就可以看到许多比赛项目。
选择一个感兴趣的比赛后,里面有关于比赛概述、具体描述、评估标准、相关奖品等等,大家在参加比赛前务必要仔细阅读评估指标和提交要求,最后点击【Join competition】即可报名比赛。
竞赛准备
看到这的小伙伴一定已经迫不及待要报名比赛了,但是咱不打无准备的仗!
阶段一:
-
首先需要理解数据思维以及数据分析逻辑;
-
学习一些统计学的知识;
-
学会使用一门编程语言(Python等);
-
理解数据预处理和数据分析的方法与思路。
阶段二:
-
学习常用的机器学习算法,理解特征工程与模型选择方法;
-
学习深度学习算法,尝试模型优化和超参数调优等内容。
方法已经教给你们了,大家可以自行去探索尝试,但是!
如果在这过程中你遇到了问题,需要有人来帮助你,你可以来找我们寻求帮助!
比如说你遇到了以下这些问题:
-
对选择什么项目摸不着头脑,这些赛题对应的分别是什么方向?
-
进入比赛详情页后不知道怎么操作,怎么快速下载数据?不想把数据下载到本地,有没有其他办法?
-
拿到数据后对赛题完全没思路,难道要一个模型一个模型的开始试?思路理不清,数据不会处理,谁来点醒我的榆木脑袋?
-
好不容易把代码拼凑在一起,明明和教程中的一模一样,我却总报错,难道我最近水逆?
-
怎么进行模型优化,那些优秀案例的思路到底从哪来的?怎么调参,别人炼丹好歹有个方向,我这纯盲调能成吗?
是时候展示我们的实力了