数字治理 | 从消费者权到个人信息保护:大数据杀熟的私法规制。从零基础到精通,收藏这篇就够了!

作 者

温世扬,武汉大学法学院教授,博士生导师

朱浩宇,武汉大学法学院硕士研究生

0****1

问题的提出与文献回顾

大数据杀熟可谓当代数字经济消费者的心头之痛。在社会层面,大数据杀熟几乎人人喊打,媒体呼吁要重罚大数据杀熟行为;互联网平台则共同签署承诺书,承诺不利用大数据“杀熟”。在法律层面,这一问题也引起了立法者的高度重视,在《消费者权益保护法》《电子商务法》等法律中均增设了相关条款。特别是2021年11月1日起施行的《个人信息保护法》第24条,可视为对大数据杀熟的直接针对性立法。但令人遗憾的是,立法层面的高度重视并未带来良好的治理实效。在司法实务中,消费者维权成功的案例极为罕见。“双十一”购物活动中不仅仍屡屡曝出大数据杀熟问题,而且在形式上有所“创新”:通过阻碍熟客参加优惠活动、购买促销商品的方式实行差别对待。

从学界的研究情况看,大数据杀熟的规制总体上可分为公法与私法两种路径。其中,公法规制路径主要探讨在宏观市场中大数据杀熟的违法性,以《中华人民共和国反垄断法》为主要法律依据,规制措施立足于政府监管。私法规制路径则是通过个体权利对抗平台权力,以民事责任作为救济路径。具体而言,学界对大数据杀熟私法规制的研究主要包含以下三个面向。

一是以《中华人民共和国消费者权益保护法》为依据进行规制。由于大数据杀熟直接涉及消费者购买商品的行为,一些学者主张从保护消费者权利的角度进行规制:传统消费者权利内涵有所不足,应该扩展知情权、自主选择权、公平交易权三项权利的内涵,并构建相应的民事责任。一些学者主张从商品买卖合同的角度进行规制:大数据杀熟涉及合同自由与合同分配正义的平衡,消费者基于被恶意诱导或隐瞒而做出不符合内心真实意愿的消费选择时可能构成价格欺诈。此外,一些学者主张将大数据杀熟中的问题拆分开来,针对算法黑箱提出算法透明,针对算法推送商品赋予消费者拒绝权,针对算法大数据杀熟设置禁止性条款。

二是以《中华人民共和国个人信息保护法》为依据进行规制。根据法工委的解释,《中华人民共和国个人信息保护法》第24条作为规范自动化决策的条款,直接针对大数据杀熟问题。不过,《中华人民共和国个人信息保护法》并非单纯的私法规范,现有研究更多聚焦于公法领域,其私法规制方案尚无具体详细的讨论。目前,我国学界虽然一般不反对私法的规制方案,赞成以侵权责任进行事后救济的可行性,但这方面的成果还很少,仅有一篇文章涉及算法歧视侵害消费者权益构成要件的分析。此外,还有学者认为,个人审查自动化决策的意义不大, 而且个人要求平台提供相关数据进行审查会极大增加平台成本,保证决策的透明度和公平公正只能依赖相关职能部门的监管。

三是反算法歧视的规制路径。这一路径主要存在于美国法,它从反歧视的视角审视算法造成的差别对待:算法的设计应当符合法律平等和非歧视的一般性规定,若算法产生的差别待遇达到歧视的程度时,便通过反歧视的制度予以规制 。这一规制路径考量的首要问题是判定算法推荐服务中的不平等对待是否达到了“歧视”的程度。按照现有认知,轻微的价格差异不属于歧视。例如,美国联邦贸易委员会曾表明,个性化定价并未扰乱市场价格的信号作用,并不引发相关法律问题。反歧视是美国法律文化传统的一大特征,各类歧视现象的判定经验比较丰富。在我国,歧视问题尚未达到美国那样严重的程度,大数据杀熟难以与歧视问题联系起来,反歧视视角对社会与司法而言都显得过于抽象。

总体而言,学界关于大数据杀熟私法规制的研究还比较薄弱,特别是对权利具体行使方式、事后救济路径等尚未予以应有的关注和重视。以《中华人民共和国个人信息保护法》规制算法问题是近年来我国立法的一个新尝试。那么,在有《中华人民共和国消费者权益保护法》《中华人民共和国反垄断法》《中华人民共和国电子商务法》等诸多相关法律存在的情况下,是否还需要《中华人民共和国个人信息保护法》的介入?特别是相较于同样直接相关的《中华人民共和国消费者权益保护法》,个人信息保护机制是否更有优势?回答这些问题,需要明确个人信息规制路径的理据,继而在行为端通过个人信息权利束中的具体权利对抗算法侵害,在结果端构建起相应的民事责任,以发挥个人信息保护的独特价值,帮助解决当下司法实务中存在的问题,从而有效遏制大数据杀熟。

0****2

路径转变:《个人信息保护法》规制大数据杀熟的理据

大数据杀熟侵害个体权益,但我国《消费者权益保护法》无法对这一问题作出有效回应,以传统的消费者权益保护制度来规制大数据杀熟显得力不从心。《个人信息保护法》可以在很大程度上弥补消费者权益保护路径的不足:大数据杀熟的行为离不开个人信息;若能有效控制个人信息,就可以直接阻断大数据杀熟的产生。

(一)现实必要性:传统消费者权利保护路径的局限

大数据杀熟直接事关消费者权益,但将传统的消费者权益保护制度用于规制大数据杀熟问题时存在明显的局限。

首先,《消费者权益保护法》难以在事前限制大数据杀熟行为。在现行法律中,消费者知情权主要针对商品和服务的情况,商家对不同消费者的差别定价未能进入消费者知情权的范畴。从自主选择权看,平台算法虽然在一定程度上影响了消费者的选择,但因算法的影响造成消费者无法进行自主选择的观点,在法律上还难以达成共识。这是因为,人的想法本就容易受外部影响,微小的环境变化就可能导致做出不一样的判断,就好比广告会影响消费者选择,算法也只是一种影响因素。因此,就公平交易权而言,公平更多是指交易对经营者与消费者来说公平合理,不过价格合理并不表示不能加价,即使因人而异,给熟客更高的价格,也同样可能属于公平交易,毕竟公平的价格不是一个特定值,一个区间内的价格都可以称为公平的价格。

其次,《消费者权益保护法》难以提供有效的事后救济。从现有案例看,消费者一方大多采取被价格欺诈的路径请求赔偿,认为消费者基于被恶意诱导或隐瞒所做出的意思表示并不符合内心真实意愿。但是,法院往往不会探求被告的行为是否符合欺诈的要件,而是聚焦于价格是否合理,购买价格“远高于市场价格”便构成欺诈。归根结底,法院很难根据差别定价来认定当事人的表意不自由。若抛开算法定价这一行为,单纯看消费者购买商品一事,消费者订立合同的行为无疑是真实意思表示。另外,损害后果也难以界定。消费者举证证明价格差异的存在本身已很不容易,而网络平台往往能够以价格“动态调整”“受市场因素影响”等理由进行抗辩。

最后,现行《消费者权益保护法》缺少针对数字消费场景的制度构建。大数据杀熟极具隐蔽性,消费者维权往往举证困难。为了较小的损失,面对庞大的网络平台专业人员队伍,维权成本极高。究其原因,现有消费者权益保护制度肇始于20世纪消费者运动,为传统法律框架下的保护模式,立法所针对的是日常生活中消费者权益保护的问题,而不是针对数字时代消费问题而设计的。在数字经济时代的网络购物明显不同于日常购物场景的情况下,仍参照日常生活中消费者购物的场景去规制大数据杀熟,难免力不从心。

因此,面对利用算法等新技术手段进行大数据杀熟的行为,以及权力远超过传统经营者的网络平台,需要找到一条更加适应数字场景的规制路径。《个人信息保护法》为这样的尝试提供了法律依据和基本框架。

(二)内在可行性:保护个人信息可以阻断大数据杀熟

单就同一商家对不同消费者的差别定价而言,并不能界定其违法性。那么,大数据杀熟何以违法?回答这一问题,必须考虑大数据杀熟较之于其他差别定价的特殊之处,即对个人信息权益的侵害。大数据杀熟离不开个人信息,保护好个人信息就能阻断大数据杀熟的产生。

第一,大数据杀熟的手段是不当处理个人信息,因而只要平台用户控制好自己的个人信息,就可以避免大数据杀熟。大数据杀熟是借助算法处理消费者个人信息来实现的。网络平台收集消费者的个人信息,通过算法处理个人信息,推测消费者的消费意愿和消费能力,据此进行个性化定价。这是大数据杀熟的基本流程。可见,如果不能收集和使用消费者的个人信息,大数据杀熟是无法实现的。因此,规范平台的个人信息处理行为可以提前阻断算法差别定价,防止杀熟的后果产生。《个人信息保护法》为此提供了依据:如果平台对个人信息的处理行为不符合该法规定,消费者就可以根据自身享有的个人信息权利拒绝算法的个性化定价,要求网络平台停止侵害,并在事后追究网络平台的民事责任。

第二,大数据杀熟的后果是对个人信息权益造成侵害,因而消费者拥有明确的维权路径。如上所述,购买商品的价格差异未必意味着消费者遭受损害;只有在个人信息权益遭受侵害的情况下,价格差异才能被认定为损害结果。在大数据时代,个人信息越来越成为一种重要的资源,关系到个人在数字社会中的行为自由。商家拥有用户的网络行为轨迹和数据,人们变得前所未有的透明,个人的选择自由便易于受到数据监视的干扰。对于消费者来说,个人信息不再附属于价格,而是与价格同等重要,成为一项独立的消费者福利内容。这正是日常生活中一定程度的差别定价为法律所允许,而大数据杀熟却是违法行为的基本原因所在。

第三,个人信息保护角度规制大数据杀熟的路径已经在实证法上开辟出来,而且比传统的消费者权利保护路径更具针对性和可操作性。在比较法上,欧盟《通用数据保护条例》(GDPR)明确规定个人享有对自身数据的携带权、删除权以及被遗忘权等权利。这些数据权利的立法目的都直接指向为个体赋权、对抗算法。我国《个人信息保护法》亦是这一思路的产物。在立法过程中,焦点议题是互联网企业对个人信息的收集与利用,这些议题在很大程度上支配了立法者与参与者对《个人信息保护法》的想象。《个人信息保护法》的立法目的在于保护消费者的个人信息,通过赋予个人信息提供者一系列权利来限制个人信息处理行为。该法不仅直接针对大数据杀熟设定了专门条款(第24条),而且通过设定过错推定侵权责任、公益诉讼等制度,为消费者维权提供更具体的法律支持,有利于解决消费者维权成本高、举证困难等问题。

总之,大数据杀熟与个人信息密不可分,只要能够有效保护个人信息,就可以阻断大数据杀熟。我国《个人信息保护法》为这一规制路径提供了依据。结合该法相关条款,可以明确大数据杀熟的判定标准、平台处理个人信息的义务,在事前限制平台的算法推荐和定价行为,在事后为消费者提供救济途径。

0****3

事前预防:以个人信息权益限制大数据杀熟

法律规制包括事前和事后两种应对机制。前者是预防性的,侧重于侵害发生前的防控;后者是回应性的,侧重于侵害发生后对侵害进行归责、追责与救济。《个人信息保护法》第24条第一款明确了网络平台使用算法需承担的义务,即“保证决策的透明度和结果公平、公正,不得对个人在交易价格等交易条件上实行不合理的差别待遇”。这一规定为个人信息处理的范围划定了界限,为事前预防、事后救济提供了法律依据。

(一)大数据杀熟属于不合理的差别待遇

《个人信息保护法》第24条第一款明确禁止了“不合理的差别待遇”。那么,是否所有大数据杀熟都属于“不合理”的差别待遇?有观点认为,“不合理”这一限制性定语明确了法律对“大数据杀熟”并非一般禁止,只有达到不合理和歧视性程度才属于不合理的差别待遇。具体来说,“不合理”是指差别待遇过大,大到超出理性人的认知;“歧视性”是指已经超越了金钱上的差别对待,上升到了对人格、尊严等待遇上的差别。这种观点认为差别待遇合理与否,在于差别的程度、差价的多少;如果差别待遇的程度不是特别高,那么就属于合理的范围。不过,这种说法可能陷入循环论证的境地,不具有实践意义。据北京市消费者协会的问卷调查,八成以上的消费者认为自己遭受过大数据杀熟。应该说,这些消费者并不是都受到了特别高的差别待遇。之所以都感觉自己遭受过大数据杀熟,是因为在一般“理性人的认知”中,只要有差价,哪怕是微小的差价也是不合理的。

事实上,大部分大数据杀熟的金额都不是很高,往往只是几块钱的差价。如果把差别待遇过大作为“不合理”的标准,将极大压缩该条款的适用空间。依照上述观点,《个人信息保护法》第24条第一款可能成为宣示性的空文,不仅难以明确个人信息处理义务,难以规范网络平台的行为,也难以使消费者找到有效的维权路径,难以对大数据杀熟发挥实际规制作用。因此,差别待遇是否合理,不应以差别待遇的程度而应以差别待遇产生的事由是否正当进行区分。商品价格的波动起伏是市场经济的一个基本规律。因此,在大数据杀熟之外,还有别的正当原因带来差别待遇。比如,商家在营销活动中主动降价;在不同时段由于交通状况和市场供给变化造成打车价格的差别等,都是正当原因造成的差别待遇。因此,《个人信息保护法》第24条所指出的“不合理的差别待遇”,并不是特指大数据杀熟的严重程度,而是指大数据杀熟与其他各种不正当原因造成的差别待遇。

大数据杀熟造成的差别待遇,即由于算法处理个人信息、个性化定价而产生的差别待遇,属于非正当事由产生的差别待遇,因而是不合理的差别待遇。其不合理之处不仅在于价格和服务等方面的差别待遇这一结果本身,而且在于处理个人信息和算法定价等造成这种差别待遇的原因。其之所以如此,从微观层面看,大数据杀熟中交易双方地位显著失衡。在现实生活中,消费者与经营者之间虽然也存在一定的信息不对称,但在特定算法推送之下的网络消费中,交易双方的地位失衡和信息不对称是现实场景无法比拟的。算法使平台的权力得到极大强化,甚至被认为是公权力、私权利之外的另一极社会权力。平台对特定商品或服务的价格操纵会极大挤压消费者的选择空间,在信息茧房中货比三家亦不再有意义。在这样的情况下,大数据杀熟产生的任何一点差别待遇,都难以获得正当性辩护。从宏观层面看,大数据杀熟可能导致市场机制失灵,从而影响和破坏市场的有序运行。大数据杀熟是侵犯消费者个人信息基础上的过高定价,导致本应归属个体消费者的剩余毫无保留地向单个经营者转移,影响社会总福利在不同主体之间的分配方式,头部经营者完全侵占消费者福利,既影响广大消费者的利益,也影响与之竞争的其他商家的利益。大数据杀熟使在资源配置中起决定性作用的东西变成了使企业获利的算法,从而在很大程度上造成市场机制的失灵。

总之,在大数据杀熟中,平台利用算法推荐技术制造差别待遇,微观上加剧了买卖双方地位的不平等,宏观上排除、限制了市场竞争。在这样的情况下,评估差别待遇的合法性,可以借鉴《中华人民共和国反垄断法》所规定的滥用市场支配地位的情形。该法第17条第一款第六项规定,“没有正当理由,对条件相同的交易相对人在交易价格等交易条件上实行差别待遇”。可见,只要没有正当理由,就构成该法所规定的滥用市场支配地位。数字经济中大数据杀熟虽非垄断,但效果并不亚于垄断。因此,用“不合理的差别待遇”涵盖全部大数据杀熟行为,对大数据杀熟作出一般的禁止性规定具有正当性。

(二)个人对大数据杀熟享有拒绝权

大数据杀熟属于法律规定的禁止性行为。即使用户对自身个人信息作出了概括性授权(如签署的平台使用协议中包含个人信息授权条款),但授权的范围不能无限扩大,而应根据《个人信息保护法》第24条来审查平台处理个人信息的行为是否符合合法、正当、必要的原则。只有这样,才能有效防范个人信息授权制度被滥用于大数据杀熟的风险。更为重要的是,个人信息提供者对大数据杀熟享有拒绝的权利。《个人信息保护法》第24条第二款、第三款虽然赋予了个人信息提供者拒绝算法自动化决策的权利,但尚未明确该权利如何实现,尚未规定哪些主体可以要求对方执行该规则或对执行情况进行监督;同时,行为要件、法律后果也都存在争议。因此,个人信息提供者的拒绝权的实现方式需要结合该法其他条款进一步完善。

第一,就行使条件而言,大数据杀熟属于《个人信息保护法》第24条第二款规定的“通过自动化决策方式向个人进行信息推送、商业营销”的情形,满足个人信息提供者的拒绝权的行使条件。该条第三款将完全自动化决策拒绝权限定于“对个人权益有重大影响”的情况,但究竟哪些是“有重大影响”的情况还存在明显争议。有人认为,大数据杀熟严重影响了个人获取服务、商品的成本和选择空间,可以认定为有重大影响。但是,该条第二款已经明确规定进行商业营销的自动化决策方应当“向个人提供便捷的拒绝方式”,个人无疑享有拒绝权,这一行使条件与第三款应当属于并列关系。从《个人信息保护法》第24条的体系来看,整个第24条都是针对算法自动化决策做出的规定:第一款针对特别事项做出禁止性规定;第二款、第三款规定个人对完全自动化决策的拒绝权。显然,第三款规定的拒绝权的范围不可能与前款之规定完全无涉,因而不应将第三款从第24条中抽离出来,孤立地看待何为“有重大影响”,而应将前两款所涉及的情形作为第三款“有重大影响”的具体情况。由于信息推送、商业营销属于平台的单方面行为,作为相对方的个人对此无法置喙;平台与消费者的关系不同于一般个人信息处理者与提供者的关系,这种场景下个体有理由享有行使条件较为宽松、行使方式较为简便的拒绝权,因此法律单独做出了规定。

第二,就权利的具体内容而言,个人对算法自动化决策享有知情权和拒绝接受服务的权利。知情是个体得以自由选择同意或拒绝的基础,也是个人信息授权的要求。知情的范围虽不必涵盖算法的运作过程,但是平台用户应当对具体的处理行为、结果及其原因知情。具体地说,平台用户对算法自动化决策的知情权不仅包含事前的概括性知情,而且包含对每一次个人信息处理行为的独立的知情权。同时,平台用户有权要求清晰明确的信息,拒绝过分冗余的信息。信息量过大会使重要信息被掩盖,因而与获取信息同样重要的是滤去冗余信息,在内容上杜绝过量、冗余和次要的信息,在形式上减少信息的复杂性和模糊性。不仅如此,平台用户还有权拒绝自动化决策的结果。用户同意平台处理个人信息和平台利用算法处理个人信息后反馈自动化决策的结果是两个不同的阶段。即使用户未拒绝平台算法处理其个人信息,仍有权拒绝包含个性化定价在内的自动化决策的结果。

第三,就条款的周延性而言,《个人信息保护法》第24条仅针对利用个人信息进行的自动化决策。其中,第二款指向针对个人特征的自动化决策,此时个人信息“可识别性”的认定,应当理解为可识别用户的消费者身份。根据《个人信息保护法》的规定,个人信息在经过匿名化处理之后就不再是个人信息。这样一来,数据的处理行为在法律上就与个人没有任何联系了。然而,此时数据处理的结果仍然可能影响到个体,数据主体还是避免不了“被标签化”的命运。实际上,平台不需要识别用户外显人格要素,只要能识别其性别、年龄、收入水平等事关消费的个人特征,便足以进行大数据杀熟。此时个人信息的识别对象体现为自然人的消费者身份,这种情况仍应属于该条所规制的范围。因此,如果个人信息经过去标识化或匿名化处理再用于大数据杀熟,虽然不能识别该个体的姓名、肖像等人格要素,但只要能识别消费者身份相关信息,便应将平台的行为认定为利用个人信息进行自动化决策。

0****4

事后救济:基于《个人信息保护法》的民事责任构建

“无救济则无权利”,私法规范需以清晰明确的民事责任为依托。《个人信息保护法》第24条从正面规定了个人信息处理者利用个人信息进行自动化决策应当遵守的规则。若平台违法进行自动化决策,侵害用户个人信息权益,则应当承担相应的侵权责任。同时,由于消费者在使用该网络平台购物之前,常需签订个人信息授权协议,与平台之间存在合同关系,因而也可追究网络平台的违约责任。在民事责任竞合的情况下,违约责任构成要件较少、证明较为容易、消费者维权成本较低,可优先于侵权责任予以考虑。

(一)违约责任

根据个人信息保护的思路,网络平台因大数据杀熟所可能承担的违约责任,并非违反购买商品或服务的合同,而是违反个人信息的授权使用合同而产生的责任。《个人信息保护法》第13条规定,个人信息处理者处理个人信息需要得到个人的授权。在网络消费中,个人信息授权通常表现为通过签署平台使用协议进行授权。这种授权使用的协议具有合同属性,网络平台如果超出授权范围处理个人信息,就构成违约;消费者即可要求网络平台承担相应的违约责任。

目前,我国学界对个人信息保护关注更多的是侵权责任的救济方式,对违约责任关注不多。主要原因在于,合同法主要规范财产流转关系,规范商品、服务等买卖或交易行为,而人格权是一种绝对权,传统上不能通过合同予以约定和处分的。但事实上,当下人格权的商业化使用已经非常普遍,如肖像权的许可使用合同就是人格权财产利益实现的范例。个人信息也不同于其他人格权,具有更加明显的财产属性。数字社会中个人信息的财产性价值催生了个人信息受法律保护的必要。因此,当个人信息授权协议存在时,个人信息维权应更积极地适用违约责任的救济方式。

现实生活中的个人信息授权多为概括性授权。概括性授权并不意味着网络平台可以任意处理个人信息,而是有一个相对确定的范围。否则,授权不但不能给消费者赋权,不能改变消费者个人信息被过度收集的现状,反而可能成为网络平台涉嫌信息侵权行为的抗辩事由,加重了消费者的弱势地位,从而背离立法的初衷。

结合《中华人民共和国民法典》(以下简称《民法典》)合同解释的规则,除非另有明确约定,概括性授权的范围不应包含大数据杀熟。《民法典》第142条第一款规定:“有相对人的意思表示的解释,应当按照所使用的词句,结合相关条款、行为的性质和目的、习惯以及诚信原则,确定意思表示的含义。”在概括性授权中,个人显然只有授权个人信息处理者进行正当自动化决策的目的,而没有授权个人信息处理者进行非法自动化决策并损害自身利益的目的。同时,这类授权合同是网络平台所拟的格式条款。按照《民法典》第498条格式合同的解释原则,在对格式条款的理解发生争议、有两种以上解释的,应当作出不利于提供格式条款一方的解释。据此,亦可认定算法大数据杀熟不在授权的范围之内。消费者的主要意愿是选择并购买商品和服务,商品价格属于消费者使用网络平台的核心利益,消费者即使事先对个人信息作出概括性授权,并同意平台通过算法进行个性化推荐服务,也不可能包含对平台进行大数据杀熟的授权。这样,消费者完全可以依据该授权合同要求对方承担违约责任。

(二)侵权责任

大数据杀熟是网络平台利用算法实施的侵权行为。在大数据杀熟中,网络平台作为个人信息处理者和算法的控制者,是侵害个人信息权益的侵权人,应依照《个人信息保护法》第69条承担侵权责任,并根据消费者个人因此受到的损失或个人信息处理者因此获得的利益来确定赔偿数额。

在大数据杀熟侵权责任的构成要件中,过错和因果关系较为清晰。就过错来说,由于网络平台对算法具有极强的控制力,即使大数据杀熟的差别定价是由算法自动化决策产生的,平台的过错也难以推脱。《个人信息保护法》第69条确立个人信息侵权应承担过错推定责任,有利于被侵权人维权。就因果关系而言,消费者购买商品,必然是依照网络平台的定价;消费者所受到的差别待遇,也必然是网络平台所实施的。因此,只要能够证明损害结果,就能证明行为与损害之间的因果关系。在大数据杀熟侵权责任的构成要件中,难以认定的是侵权行为和损害结果。

1. 行为违法性的认定

根据《个人信息保护法》第24条第一款的规定,平台自动化决策可能涉及的违法行为有:个人信息处理者利用个人信息进行自动化决策,未能做到决策的透明度和结果公平、公正,或是对个人在交易价格等交易条件上实行了不合理的差别待遇。在大数据杀熟问题上,这些违法行为实际上是同一个行为:实行了不合理的差别待遇即表明决策未能做到公平、公正,而知情权受到侵害则是在大数据杀熟中必然存在的附带性侵害。不论是否存在大数据杀熟,网络平台都不会主动告知消费者是否存在差别待遇:没有大数据杀熟就不存在需要告知的相关内容;存在大数据杀熟则不可能主动告知消费者。

差别待遇并不限于直接的价格差异,诸如差异性的标准、规则、交易价格、付款条件等,都可能属于不合理的差别待遇。问题在于,消费者可以通过与其他用户购买同一商品比价以知悉差别待遇的存在。但这种差别待遇是否通过利用个人信息进行算法自动化决策实现的,却无从验证;在追究侵权责任时,也无从证明。这是因为在交易过程中,客观存在着影响价格变化的诸多因素。例如,商家对用户在不同时间购买的同一航班机票价格不同,很容易提出差别待遇并非算法自动化决策而产生的抗辩事由。同时,由于算法黑箱的存在,在输入的数据和输出的结果之间存在连开发人员都可能无法知晓的隐层,非专业的普通消费者更不可能知道价格变化是市场因素还是算法造成的,因而难以判断和证明是否存在大数据杀熟。

因此,更可行的方案是推定差别待遇属于大数据杀熟造成的不合理差别待遇。只要消费者能证明差别待遇和网络平台事先收集个人信息的行为存在,就可以推定这种差别待遇为不合理的差别待遇。在举证责任问题上,消费者仅对网络平台收集个人信息、实施差别对待负有举证责任,而平台应举证证明该差别待遇具有合理性,否则就应认为该差别待遇不具有合理性。 网络平台在证明差别待遇的合理性时,应当明确合理的标准和情形,而不是列举不合理的情形。虽然立法不可能将各种商品和服务的价格、待遇变化的合理情形一一明确,但仍可将当前市场环境中受到社会认可的商业模式和惯例作为合理的事由,在司法解释及指导案例等司法实践中形成一定的共识和规则。这方面可以参照肖像权、著作权等合理使用制度的思维,根据现实中存在的合理差别待遇情形,为合理差别待遇设定较为明确的标准。

具体地说,合理差别待遇主要有两类。一是市场因素所导致的价格波动。商品的价格随供需关系、市场变化而波动,是市场经济的基本准则。它通常表现为因时间、地点、渠道不同导致的价格差异。不过,这一合理情形不应被滥用,平台应当证明其价格波动的合理性。在现有案件中,作为被告的网络平台只是证明平台上的外卖费会随时间而调整,法院便认定商品服务的费用“是动态调整的,不同时间下单的价格不具有可比性”,“现有证据不足以证明被告利用大数据区别定价”,是难以服众的。平台理应进一步说明费用变化的具体原因和标准。二是社会认可的商业惯例。主要是指各类折扣促销,包括针对不同人群的不同价格,如对弱势群体或特殊职业的折扣价格;基于不同交易条件而产生的价格差别,如现金支付与分期付款的价格差别;因拉新、促销导致的价格差别,如对新用户在合理期限内给予优惠价格。

2. 损害结果的认定

损害结果是大数据杀熟侵权责任中极富争议的问题。损害认定的首要问题是消费者基于差别定价而购买商品这一结果是否构成一种损害。一种观点认为,大数据杀熟中个人的民事权益并未遭受侵害,消费者只是支付了过高的价款,此价格差异为该消费者的纯粹经济损失。另一观点则认为,在确认算法自动化决策产生的歧视作为侵犯个人信息利益新型侵害的情况下,只要平台算法产生了歧视性结果,则可认定为产生了损害。

根据上文对《个人信息保护法》第24条的解释,不合理的差别待遇是一种直接的违法行为。对显性不法行为而言,法律规则足可直接定性损害结果。因此,大数据杀熟中的损害是个人信息权益受到侵害,支付的过高价款则是该损害的具体数额。至于消费者在浏览商品的过程中因不合理的差别待遇所受到的负面影响,如遭受一定程度的选择不自由、辨别大数据杀熟所付出的时间精力成本,或者是对此风险产生的焦虑情绪,则难以被认定为实际损失。此时消费者虽面临一定的选择不自由,但损害尚模糊和不确定,法院往往以原告没有证明遭受实质性损害为由驳回损害赔偿的诉讼请求。面对这种情况,消费者可以依照《民法典》第1037条第二款、《个人信息保护法》第47条行使删除权,要求个人信息处理者删除自己的个人信息。

另外,损害的具体数额如何认定?消费者往往是在尝试用其亲友、同事的手机上购买同一商品的过程中发现大数据杀熟的存在。然而,其亲友、同事作为另一消费者,即便购买商品的价格稍低,也并不意味着其未曾受到大数据杀熟,可能只是受到大数据杀熟的金额稍少。解决这一问题,不能单靠个人的力量。任何商品的“合理价格”都是一个区间范围内的数字,并非某个特定的数值,没有人能证明一个具体的数字是购买某一商品的“合理价格”。因此,除了与他人比价所发现的价格差异,消费者个人无从证明损害的数额,需要法律规范引导。其中,一种方法是设定明确的价格标准或赔偿标准。如美国对个人信息侵权就有直接设定法定赔偿额的做法。还有一种方法是通过算法解释权制度,要求平台对差价作出清晰可验证的解释。此外,像外卖这样社会覆盖面极广、事关民生的行业,还可以通过政府监管的方式,要求头部公司公示外卖配送价格调整的标准。

0****5

结 语

以大数据杀熟为代表的算法“权力”,已广泛影响到人们的社会生活,算法仿佛成为信息时代的新式“利维坦”。算法问题的特殊性在于,只要一个人受到侵害,就会有一大批人受到侵害。大数据杀熟就是一个最好的例子。处理个人信息是大数据杀熟不可或缺的基本手段。只有从个人信息保护的角度揭示其违法性和危害性,才能切中要害、有效规制大数据杀熟。《个人信息保护法》为这一规制路径提供了法律依据和基本框架。同时,还需进一步探索相关权利的落地方式、事后救济途径。面对不可捉摸又无处不在的算法“权力”,从私法角度进行解读的价值在于,使权利在虚拟世界里继续发挥“对抗权力”的作用,从而为大数据潮流中的个体保留自己的空间,使科技真正造福于人类。

囿于篇幅,公号舍去注释和参考文献,完整版本详见《社会治理》2024年第5期。

END

黑客&网络安全如何学习

今天只要你给我的文章点赞,我私藏的网安学习资料一样免费共享给你们,来看看有哪些东西。

1.学习路线图

攻击和防守要学的东西也不少,具体要学的东西我都写在了上面的路线图,如果你能学完它们,你去就业和接私活完全没有问题。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己录的网安视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

内容涵盖了网络安全法学习、网络安全运营等保测评、渗透测试基础、漏洞详解、计算机基础知识等,都是网络安全入门必知必会的学习内容。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

3.技术文档和电子书

技术文档也是我自己整理的,包括我参加大型网安行动、CTF和挖SRC漏洞的经验和技术要点,电子书也有200多本,由于内容的敏感性,我就不一一展示了。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

4.工具包、面试题和源码

“工欲善其事必先利其器”我为大家总结出了最受欢迎的几十款款黑客工具。涉及范围主要集中在 信息收集、Android黑客工具、自动化工具、网络钓鱼等,感兴趣的同学不容错过。

还有我视频里讲的案例源码和对应的工具包,需要的话也可以拿走。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

最后就是我这几年整理的网安方面的面试题,如果你是要找网安方面的工作,它们绝对能帮你大忙。

这些题目都是大家在面试深信服、奇安信、腾讯或者其它大厂面试时经常遇到的,如果大家有好的题目或者好的见解欢迎分享。

参考解析:深信服官网、奇安信官网、Freebuf、csdn等

内容特点:条理清晰,含图像化表示更加易懂。

内容概要:包括 内网、操作系统、协议、渗透测试、安服、漏洞、注入、XSS、CSRF、SSRF、文件上传、文件下载、文件包含、XXE、逻辑漏洞、工具、SQLmap、NMAP、BP、MSF…

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值