大模型开发 - 一文搞懂Fine-tuning(大模型微调)(非常详细)从零基础到精通,收藏这篇就够了!

本文将从Fine-tuning的本质、Fine-tuning的原理Fine-tuning*************************************************************的应用***************************************三个方面,带您一文搞懂**大模型微调:Fine-tuning

Fine-tuning

******一、******Fine-tuning的本质

**Fine-tuning(微调):**通过特定领域数据对预训练模型进行针对性优化,以提升其在特定任务上的性能。

  • 一、微调的定义

    大模型微调是利用特定领域的数据集对已预训练的大模型进行进一步训练的过程。它旨在优化模型在特定任务上的性能,使模型能够更好地适应和完成特定领域的任务。

  • 二、微调的核心原因

    定制化功能:微调的核心原因是赋予大模型更加定制化的功能。通用大模型虽然强大,但在特定领域可能表现不佳。通过微调,可以使模型更好地适应特定领域的需求和特征。

    领域知识学习:通过引入特定领域的数据集进行微调,大模型可以学习该领域的知识和语言模式。这有助于模型在特定任务上取得更好的性能。

  • 三、微调与超参数优化

    微调过程中,超参数的调整至关重要。超参数如学习率、批次大小和训练轮次等需要根据特定任务和数据集进行调整,以确保模型在训练过程中的有效性和性能。

ChatGPT 大模型微调

******Hugging Face:******一个提供丰富预训练模型和工具的领先平台,助力自然语言处理(NLP)任务的快速开发与部署。

  • 一、公司介绍

  • Hugging Face 是一家专注于自然语言处理(NLP)模型训练和部署的平台公司。

  • 二、平台特点

  • 提供多种 NLP 任务的模型库,如语言翻译、文本生成和问答。

  • 提供了在特定数据集上微调预训练模型的工具。

  • 提供了访问和利用应用程序中预训练模型的 API。

  • 提供了构建定制模型并将其部署到云端的工具。

  • 三、使用优势

    模型多样性:提供大量预训练的 NLP 模型,满足不同任务需求。

跨平台兼容性:与 TensorFlow、PyTorch 和 Keras 等主流深度学习框架兼容。

微调便捷性:提供微调工具,节省从头开始训练模型的时间和精力。

社区支持:拥有庞大且活跃的用户社区,提供互助和支持。

文档丰富:提供大量文档,便于用户学习和有效使用平台。

Hugging Face

二、Fine-tuning的原理

**大模型微调的步骤:**在选定相关数据集和预训练模型的基础上,通过设置合适的超参数并对模型进行必要的调整,使用特定任务的数据对模型进行训练以优化其性能。

大模型微调包含以下四个核心步骤:

  • 数据准备:

  • 选择与任务相关的数据集。

  • 对数据进行预处理,包括清洗、分词、编码等。

  • 选择基础模型:

  • 选择一个预训练好的大语言模型,如BERT、GPT-3等。

  • 设置微调参数:

  • 设定学习率、训练轮次(epochs)、批处理大小(batch size)等超参数。

  • 根据需要设定其他超参数,如权重衰减、梯度剪切等。

  • 微调流程:

  • 加载预训练的模型和权重。

  • 根据任务需求对模型进行必要的修改,如更改输出层。

  • 选择合适的损失函数和优化器。

  • 使用选定的数据集进行微调训练,包括前向传播、损失计算、反向传播和权重更新。

大模型微调流程

**********************RLHF(Reinforcement Learning from Human Feedback):**********************一种利用人类反馈作为奖励信号来训练强化学习模型的方法,旨在提升模型生成文本等内容的质量,使其更符合人类偏好。

强化学习(Reinforcement Learning)结合人类反馈(Human Feedback)来微调大语言模型(Large Language Models)的一般过程:

  • 一、使用监督数据微调语言模型:

  • 这一步与传统的fine-tuning类似,即使用标注过的数据来调整预训练模型的参数,使其更好地适应特定任务或领域。

微调语言模型

  • 二、训练奖励模型:

  • 奖励模型用于评估文本序列的质量,它接受一个文本作为输入,并输出一个数值,表示该文本符合人类偏好的程度。

  • 训练数据通常由多个语言模型生成的文本序列组成,这些序列经过人工评估或使用其他模型(如ChatGPT)进行打分。

  • 这个奖励信号在后续的强化学习训练中至关重要,因为它指导模型生成更符合人类期望的文本。

训练奖励模型

  • 三、训练RL模型:

  • 在强化学习框架中,需要定义状态空间、动作空间、策略函数和价值函数。

  • 状态空间是输入序列的分布,动作空间是所有可能的token(即词汇表中的词)。

  • 价值函数结合了奖励模型的输出和策略约束,用于评估在给定状态下采取特定动作的价值。

  • 策略函数就是经过微调的大型语言模型,它根据当前状态选择下一个动作(token),以最大化累计奖励。

训练RL模型

三、Fine-tuning的应用****************

大模型微调的方式**:可通过全量调整所有参数以充分适应新任务,或采用参数高效微调技术仅优化部分参数以实现快速且低成本的迁移学习。**

一、全量微调(Full Fine-Tuning)

全量微调利用特定任务数据调整预训练模型的所有参数,以充分适应新任务。它依赖大规模计算资源,但能有效利用预训练模型的通用特征。

二、参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)

PEFT旨在通过最小化微调参数数量和计算复杂度,实现高效的迁移学习。它仅更新模型中的部分参数,显著降低训练时间和成本,适用于计算资源有限的情况。PEFT技术包括Prefix Tuning、Prompt Tuning、Adapter Tuning等多种方法,可根据任务和模型需求灵活选择。

  1. Prefix Tuning
  • 方法:在输入前添加可学习的virtual tokens作为Prefix。

  • 特点:仅更新Prefix参数,Transformer其他部分固定。

  • 优点:减少需要更新的参数数量,提高训练效率。

  1. Prompt Tuning
  • 方法:在输入层加入prompt tokens。

  • 特点:简化版的Prefix Tuning,无需MLP调整。

  • 优点:随着模型规模增大,效果接近full fine-tuning。

  1. P-Tuning
  • 方法:将Prompt转换为可学习的Embedding层,并用MLP+LSTM处理。

  • 特点:解决Prompt构造对下游任务效果的影响。

  • 优点:提供更大的灵活性和更强的表示能力。

  1. P-Tuning v2
  • 方法:在多层加入Prompt tokens。

  • 特点:增加可学习参数数量,对模型预测产生更直接影响。

  • 优点:在不同任务和模型规模上实现更好的性能。

  1. Adapter Tuning
  • 方法:设计Adapter结构并嵌入Transformer中。

  • 特点:仅对新增的Adapter结构进行微调,原模型参数固定。

  • 优点:保持高效性的同时引入少量额外参数。

  1. LoRA
  • 方法:在矩阵相乘模块中引入低秩矩阵来模拟full fine-tuning。

  • 特点:更新语言模型中的关键低秩维度。

  • 优点:实现高效的参数调整,降低计算复杂度。

参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)

支持微调的模型和数据集**********:大型语言模型通过微调可以适应不同任务,而中文微调数据集为模型在中文领域的应用提供了关键资源。******

一、支持微调的模型:

支持微调的模型

二、大模型微调开源数据集

1. 对于大型语言模型的微调,数据集是关键。

instruction字段通常用于描述任务类型或给出指令,input字段包含模型需要处理的文本数据,而output字段则包含对应输入的正确答案或期望输出。

典型数据集格式

2. 常用中文微调数据集可能包括:

  • 中文问答数据集(如CMRC 2018、DRCD等),用于训练问答系统。

  • 中文情感分析数据集(如ChnSentiCorp、Fudan News等),用于训练情感分类模型。

  • 中文文本相似度数据集(如LCQMC、BQ Corpus等),用于训练句子对匹配和相似度判断任务。

  • 中文摘要生成数据集(如LCSTS、NLPCC等),用于训练文本摘要生成模型。

  • 中文对话数据集(如LCCC、ECDT等),用于训练聊天机器人或对话系统。

大模型微调开源数据集

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

### 如何将微调后的模型保存并下载到本地 为了实现将经过微调的机器学习或深度学习模型保存至本地设备,可以采用多种方法和技术栈。以下是具体的技术细节: #### 使用 Hugging Face 的 PEFT 工具包 Hugging Face 提供了一个名为 `PEFT`(Parameter-Efficient Fine-Tuning)的工具包[^2],它支持高效参数调整技术,允许用户轻松加载、训练以及导出微调后的模型。通过该库中的功能模块,可以直接将模型保存为本地文件。 保存模型的核心代码如下所示: ```python from peft import PeftModel, PeftConfig # 假设 model 是已经完成微调的 PyTorch 模型实例 model.save_pretrained("./local_model_directory") # 将模型权重存储在指定目录下 ``` 上述脚本会把模型及其配置文件存入指定路径 `"./local_model_directory"` 中。这些文件通常包括但不限于以下几类:PyTorch 权重 `.bin`, 配置 JSON 文件等。 #### 设备端模型的独特优势 对于完全运行于终端上的模型而言,在不依赖云端的情况下即可完成数据处理与模型优化过程[^1]。这意味着当您希望保护隐私或者减少延迟时,这种方法尤为适用。一旦完成了个性化适配之后,就可以直接将其序列化成二进制形式以便后续部署应用。 另外值得注意的是,《Machine Learning for Computer Systems and Networking:A Survey》一文中提到关于计算机系统及网络领域内的机器学习分类体系结构介绍[^3],虽然此部分并未涉及具体的模型保存操作指南,但它为我们理解不同场景下的ML解决方案提供了理论基础框架指导意义非凡。 #### 总结 无论是借助像HuggingFace这样的开源平台所提供的高级API接口还是遵循传统方式手动编写逻辑来达成目标——即将精调完毕后的AI算法实体转移到个人电脑硬盘上都是可行且被广泛实践验证有效的途径之一;同时也要考虑到实际应用场景需求差异从而选取最合适的策略组合运用其中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值