Inducing Target-Specific Latent Structures for Aspect Sentiment Classification

在这里插入图片描述

Inducing Target-Specific Latent Structures for Aspect Sentiment Classification

面向体感分类的特定目标潜在结构诱导

Abstract

将依存树与图结合,提出一种门控机制,动态的组合来自自注意力网络学习的词依存关系图和潜在(latent)图的信息

Model

在这里插入图片描述

  • 使用两个句子编码器:BiLSTM、BERT
  • 提出了三种潜在图的学习方法
    – 自注意力
    – 稀疏自注意力
    – 应kuma
  • 将依存图、latent 图通过门控GCN进行编码

启发

三种潜在图的构建方法和门控GCN是一个亮点
缺点就是没有代码参考,自己又复现不了,如果有大佬能够复现,跪求联系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值