融合领域知识的基于深度学习的光伏发电预测

Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge

融合领域知识的基于深度学习的光伏发电预测

Abstract

太阳能是传统能源的有效补充。然而,光伏发电(PVPG)对天气的依赖性很强,因此具有很强的间歇性。光伏发电的高精度预测是电力生产、输送和分配的基础,保证了电力系统的稳定性和可靠性。在这项工作中,我们提出了一个基于深度学习的框架,用于准确的 PVPG 预测。特别是,利用长短期记忆(LSTM)网络解决基于序列数据的回归问题,本文考虑了 PV 的特定领域知识,并提出了一种物理约束 LSTM(PC-LSTM)来预测每小时日前 PVPG。它旨在克服当前机器学习算法仅基于海量数据应用,从而容易产生不合理预测的缺点。采用真实的光伏数据集来评估模型的可行性和有效性。基于两阶段混合方法对输入特征变量的选择进行敏感性分析。结果表明,所提出的 PC-LSTM 模型比标准 LSTM 模型具有更强的预测能力。它对 PVPG 预测具有更强的鲁棒性,更适合实际中数据稀疏的 PVPG 预测。与传统的机器学习和统计方法相比,PC-LSTM 模型还表现出优越的性能,PVPG 预测的准确性更高。

1. Introduction

全球经济的增长导致电力需求不断增加,但传统的化石燃料能源在满足需求的同时对环境造成了严重影响,包括温室气体排放和全球气候变化。为了解决这一问题,过去十年中可再生能源的发电量持续增加,其中光伏(PV)能源占据主导地位,并在能源市场中得到广泛应用。光伏发电由于其巨大的潜力和可用性,被视为解决能源挑战的有前途的选择。太阳能辐射在地球上的总量远远超过全球电力需求,因此太阳能充足,可满足人类活动的能源需求。

然而,光伏发电量(PVPG)的准确预测对于电力系统运营至关重要,不仅对电力供应商有利,还有助于确保电力系统的稳定性和可靠性。电力供应商需要准确的 PVPG 信息来制定商业报价,从而提高生产效率并增加利润。此外,准确的 PVPG 预测还有助于应对光伏发电的不确定性,确保电力系统的稳定性。

然而,PVPG 的预测面临着许多挑战,因为它受到太阳辐照度和气象因素等多种不确定因素的影响,这些因素通常难以精确掌握。因此,准确和稳定地预测 PVPG 一直是一个具有挑战性的问题,需要不断的研究和改进。

研究 PVPG 预测的方法可以大致分为四类:

物理模型:这些模型建立在太阳能电池的全球辐照度和光伏系统的物理状态等方面的数学方程基础上。物理模型在天气条件稳定时具有较高的精度,但在天气波动较大时可能表现不佳。

统计模型:这些模型建立在统计关系的基础上,通常涉及随机变量与其他非随机变量之间的数学关系。统计模型包括自回归移动平均(ARMA)模型以及其改进版本,如 ARIMA、ARMAX 和 SARIMA,还包括回归模型和指数平滑模型等。

机器学习模型:近年来,机器学习模型在 PVPG 预测中得到广泛应用。这些模型通过数据准备、算法训练和模型生成等步骤来进行预测。常用的机器学习模型包括人工神经网络(ANN)、支持向量机(SVM)和极限学习机(ELM)等。

混合模型:在某些情况下,单一模型难以准确预测 PVPG,因此采用多种模型的组合,称为混合模型,以提高预测精度。这些模型可以利用不同拓扑的潜在组合来提高准确性。

近年来,针对 PVPG 预测的研究取得了显著进展,特别是在深度学习领域。长短期记忆(LSTM)网络,作为一种循环神经网络,能够有效处理时间序列数据的相关性,并且避免了传统 RNN 中的梯度问题。因此,LSTM 已被广泛用于 PVPG 预测,并取得了良好的结果。

然而,现有的机器学习模型存在一些限制,它们通常仅依赖于大量数据,而缺乏领域知识和物理定律的引导。这可能导致不合理的预测结果,如负发电量或夜间正发电量等。为了克服这些限制,本文提出了一种物理约束 LSTM(PC-LSTM)模型,它结合了领域知识和物理定律,以提高 PVPG 预测的可靠性和准确性。

此外,本文还提出了一种两阶段混合方法,用于选择高度相关的特征变量,以确保模型输入的合理性。通过结合领域知识,PC-LSTM 模型在鲁棒性和处理稀疏数据方面表现出比标准 LSTM 更强的性能。

2. Selection method of feature variables

在这项工作中,提出了一种混合方法,用于选择适当的特征子集作为模型的输入。这个方法包括两个主要阶段:过滤器阶段和包装器阶段,旨在提高特征变量选择的效率和准确性。

过滤器阶段,使用过滤方法来在学习任务之前对特征进行筛选。这个阶段的目标是根据不同类型的过滤标准来选择与目标变量(在这种情况下是 PVPG)之间具有相关性的特征。具体来说,使用了皮尔逊相关系数(PCC)来评估输入变量与目标变量之间的线性相关性。PCC 可以帮助确定不同时间点的输入变量与目标变量之间的关系。其他标准如斯皮尔曼系数、互信息系数和距离相关系数等也可以用于评估变量之间的相关性。

包装器阶段,使用包装方法来评估每个特征子集的有效性。这个阶段的目标是通过最小化特定预测模型的预测误差来确定最适合的特征子集。在这个工作中,采用了标准的长短期记忆(LSTM)模型来评估特征子集。通过使用包装方法,可以更好地考虑特征之间的交互作用,因为它们是基于学习算法的性能来选择的。

这种混合方法的优点在于它继承了过滤方法和包装方法的优势,同时弥补了它们的不足。过滤方法具有高效性和计算速度快的特点,适用于大型数据集,但它们忽略了学习算法和特征之间的交互。包装方法考虑了这些交互作用,但需要大量计算资源,因为它们涉及评估大量的特征子集。通过在过滤器阶段使用相关性结果来引导包装器阶段的特征选择,这种混合方法提高了特征选择的效率,并有望提供更准确的特征子集。

这个方法在 PVPG 预测等领域可能会有广泛的应用,因为特征选择对于构建高性能的预测模型非常重要。通过选择合适的特征子集,可以减少模型的复杂性,提高预测的可解释性,并可能提高模型的泛化能力。

3. PV power generation forecasting models

3.1. LSTM model

LSTM(长短期记忆)是一种特殊的循环神经网络(RNN),它在处理序列数据时与传统的人工神经网络(ANN)有本质区别。LSTM 和 RNN 都是用于处理序列数据的模型,它们具有内部自循环结构,可以在序列数据中保留先前的信息并建立时间相关性。然而,LSTM 和 RNN 的主要区别在于它们的重复模块的结构。

在基本 RNN 中,重复模块的结构非常简单,通常是一个包含 Tanh 层的单元。而在 LSTM 中,重复模块包含四个相互作用的层,包括三个门层和一个 Tanh 层。这四个部分的结构使 LSTM 能够更有效地处理长序列数据并更好地捕捉时间相关性。

LSTM 的核心是单元状态(cell state),它可以在整个网络中流动并携带先前时间步的信息。LSTM 模型具有控制删除或添加细胞状态信息的能力,这些信息由门层精细调节。以下是 LSTM 中关键的门层:

忘记门(Forget Gate)

这是 LSTM 的第一层门层,决定要忘记前一个时间步的哪些信息。忘记门的输出(ft)是一个介于 0 和 1 之间的数字,它控制着要保留多少以前的细胞状态信息。具体的计算方式如下:

f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)

输入门(Input Gate)

输入门决定了在当前时间步要更新的信息。它包括两个部分,一个 Sigmoid 激活函数用于确定哪些值将更新,一个 Tanh 激活函数用于创建新的候选细胞状态。计算方式如下:

i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi[ht1,xt]+bi)

c ^ t = tanh ⁡ ( W c ⋅ [ h t − 1 , x t ] + b c ) \hat{c}_t = \tanh(W_c \cdot [h_{t-1}, x_t] + b_c) c^t=tanh(Wc[ht1,xt]+bc)

更新细胞状态(Update Cell State)

通过将忘记门的输出和输入门的输出应用于前一个细胞状态,可以更新细胞状态。这是通过以下公式完成的:

c t = f t ⋅ c t − 1 + i t ⋅ c ^ t c_t = f_t \cdot c_{t-1} + i_t \cdot \hat{c}_t ct=ftct1+itc^t

输出门(Output Gate)

输出门决定了最终的隐藏状态和当前时间步的细胞状态。计算方式如下:

o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo[ht1,xt]+bo)

h t = o t ⋅ tanh ⁡ ( c t ) h_t = o_t \cdot \tanh(c_t) ht=ottanh(ct)

3.2. Physics-constrained LSTM model 物理约束的 LSTM 模型

PC-LSTM 模型中的物理约束

在本小节中,首先从 PV 的领域知识和物理定律中提取物理约束,然后集成到 PC-LSTM 模型的构建中。它旨在克服当前机器学习算法仅基于海量数据应用而不考虑物理法规影响的缺点。 PCLSTM 模型的架构如图 5 所示。

具体来说,三种类型的约束(在图 5 中表示为 Cons.#1、Cons.#2 和 Cons.#3)被集成到 PC-LSTM 的构造中。第一个模块称为数据过滤模块,它根据标志变量将输入数据过滤到不同的时间段。它是基于世界知识或光伏常识而设计的,旨在通过过滤训练数据,消除训练和测试过程中物理上不合理的预测,例如午夜正发电

正如第 2 节中所讨论的,光伏发电很大程度上取决于地表附近的光伏电池板接收到的太阳辐射。因此,标记地表具有正太阳辐射的时期非常重要。这是由数据过滤模块根据时间序列变量(称为每小时表面辐射(SR*))的值自动完成的。在训练阶段,只有标记时段的数据才能转移到模型中进行进一步训练并用于预测光伏输出。另一方面,在预测阶段,对于预计地表辐射为零的时段,将相应地计算最终的光伏发电量。由于模型训练采用的数据较少,PC-LSTM 的效率可以得到一定程度的提升。

集成到 PC-LSTM 中的第二个约束称为裁剪模块,*用于在训练和测试过程中将模型的输出限制在合理的范围内。它是基于光伏自然科学知识而设计的,旨在消除物理上不合理的预测,例如负发电量。*根据物理定律,实际中 PVPG 的值物理上应大于零,因此模型输出应为正。因此,PC-LSTM 的输出 应受到如下等式中约束:

其中 ReLU 是修正的线性单位函数。当函数的输入为负时,ReLU 函数返回零;当函数的输入为正时,返回输入的原始值。

实践中的工程控制也可能有助于指导 PC-LSTM 的构建。由于光伏发电是直接由地表辐射转化而来,因此在太阳辐射量确定的情况下,理论上一定时间内的 PVPG 量应该在一定范围内。根据 SR* 和 PVPG 之间的光电转换关系,如图 6 所示,光伏发电输出应该落在一定的范围内,这可以根据历史数据或理论依据构建。从图 6 可以看出,*PVPG 值在范围内变化很大。之所以如此,是因为 PVPG 不仅与表面辐射有关,还反映了光伏电池板的物理信息,如材料、方向和地理信息。*此外,图中用黑色十字标记的异常值可以根据适当的评估标准使用 K-means 算法来检测。在本研究中,如果评估点与簇质心之间的距离超过阈值 δ \delta δ(其中 δ = x ˉ + 3 σ \delta = \bar{x} +3\sigma δ=xˉ+3σ),则该点被视为异常值。

随后,可以通过历史数据中的边界点(没有异常值)来确定上限和下限。因此,上限和下限函数被定义为边界控制,以限制训练过程中 PV 输出的预测。在本研究中,有理函数可以表示为分子和分母均由多项式表达式给出的代数分数,用于导出下限函数和上限函数分别为 f L B ( x ) f^{LB}(x) fLB(x) f U B ( x i ) f^{UB}(x_i) fUB(xi)。本工作中采用的绑定函数的解析形式在附录中具体说明。需要注意的是,有理函数并不是可用于拟合任务的唯一格式。其他格式的拟合函数(例如多项式、指数和具有适当系数的幂)也是可以接受的。

其中 x x x f ( x ) f(x) f(x)分别表示SR*和PVPG值;利用MATLAB软件的曲线拟合工具箱可以轻松求解方程左半部分有理函数的系数 m p L B ^{pLB}_m mpLB p n U B p^{UB}_n pnUB q m L B q^{LB}_m qmLB q n U B q^{UB}_n qnUB;利用方程右半部分的偏置对函数进行轻微调整,根据具体情况确定方程阶m和n。

将上述约束集成到 PC-LSTM 模型中是通过损失惩罚模块重建损失函数。理论上,当违反这些约束控制时,应该有一个惩罚损失项或基于知识的损失项 MSEPLT,反映在损失函数中。因此,PC-LSTM 模型的损失函数可以重新表述为:

4.个人总结

  1. 这篇论文提出了一种基于深度学习的光伏发电预测模型,旨在克服现有机器学习模型仅基于大量数据而不考虑领域知识和物理定律的局限性。该模型称为物理约束 LSTM(PC-LSTM),并在光伏发电预测任务中进行了评估。
  2. 作者是真的会写(利用领域知识和物理知识),实际上就是对历史PVPG的值进行统计,然后找到一个范围,再利用这个范围作为约束信息,把这个创新点成为约束信息是真的,但是作者将其成为领域知识和物理知识,是真的会写,牛的。
  3. 可以对约束信息这一部分进行改进,直接作为模型的输入。
  4. 欢迎关注微信公众号:自然语言处理CS,一起来交流机器学习算法。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于深度学习的图像文本融合算法需要学习以下知识: 1. 深度学习基础 深度学习是实现图像文本融合的核心算法,需要掌握深度学习基础知识,如神经网络、卷积神经网络、循环神经网络、梯度下降等。 2. 图像处理与计算机视觉 图像文本融合算法需要对图像进行处理,因此需要掌握图像处理和计算机视觉的基础知识,如图像增强、图像分割、目标检测等。 3. 自然语言处理 文本是图像文本融合中的另一个重要组成部分,需要使用自然语言处理算法对文本进行处理,因此需要掌握自然语言处理的基础知识,如文本分词、词性标注、命名实体识别等。 4. 深度学习框架 深度学习框架是实现深度学习算法的工具,需要掌握常见的深度学习框架,如Tensorflow、PyTorch等。 5. 计算机图形学 计算机图形学是图像文本融合算法的另一个关键领域,需要掌握计算机图形学的基础知识,如三维模型、光照、材质等。 6. 数据集和数据预处理 深度学习算法需要大量的数据支持,需要掌握数据集的构建方法和数据预处理的技术,以提高算法的准确度和鲁棒性。 7. 算法评估和优化 算法评估和优化是深度学习算法开发中的重要环节,需要掌握常见的评估指标和算法优化方法,以提高算法的性能和效率。 通过学习以上知识,可以掌握基于深度学习的图像文本融合算法的核心技术和实现方法,从而实现高质量的图像文本融合效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自然语言处理CS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值