基于深度学习的光伏发电量预测 - 完整代码数据附带

本文介绍了使用深度学习中的DNN LSTM网络预测光伏发电量的方法,详细阐述了数据预处理、模型构建及代码实现过程。提供完整的Python代码和数据集,便于读者进行实际操作和研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言:
光伏发电是一种可再生能源,其产出的电力受到天气、季节、时间等多种因素的影响。准确预测光伏发电量对于电力系统的运行和规划具有重要意义。本文将介绍如何使用深度学习技术,具体而言是DNN LSTM网络,来进行光伏发电量的预测。我们提供了完整的代码和数据,供读者直接运行和使用。

代码:
以下是基于Python和TensorFlow库的完整代码示例:

# 导入所需的库
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值