因果推断-Uplift Model:Meta Learning

上篇介绍了Causal Tree,这篇介绍另一类Uplift Model:Meta Lerning。Meta Lerning与Causal Tree策略的不同点在于,它不像Causal Tree直接将CATE作为目标函数,而是选择一款基学习器先估计target,然后根据实验组和对照组target的变化来估计CATE,是一种间接估计CATE的方法。下面介绍三种Meta Lerning方法:

    1)T-learner:实验组和对照组分别建模,最终得到两个模型。然后将两个模型预测值的差作为  CATE的估计。主要缺陷有两点,一是实验组和对照组模型的bias会积累,导致最终估计的CATE有更大的bias;二是treatment只能是离散值。

    2)S-Learner:实验组和对照组放到一起建模,并把treatment作为特征加入模型中,然后将实验组和对照组预测值的差异作为CATE的估计。一定程度上克服了T-Leraner的缺陷,但是如果本身特征X很多时treatment可能会失去效果,导致估计的CATE接近0。

    3)X-Learner:实验组和对照组分别建模,将对照组放到实验组进行模型预测,将实验组放到对照组进行模型预测,然后将预测值与真实值的差异作为CATE的估计。该方法对实验组和对照组样本不平衡时有较好的表现效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值