1.安装Anaconda
基本操作,各位熟悉的同学可以直接跳过
可以选择从官网或者国内镜像网站下载(建议国内镜像)。前者因为各种原因,速度一般非常慢。国内一般选择后者镜像下载。
(1)官网,进去都是英文,不懂直接点翻译。
(2)国内镜像源。这里提供的是清华大学开源镜像网站。
Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
(看准最新日期下载最新版,再看文件名下载相应系统的对应版本,一般看准windows和x86_64还有exe的版本就可以了)
安装时要记住安装目录!后面要用到!
安装完后会出现这两个
一般我们只用下面的Anaconda Powershell Prompt进行命令行操作即可。
2.安装PyCharm
进入网址:Download PyCharm: Python IDE for Professional Developers by JetBrains
点击下面的PyCharm社区版进行下载(专业版免费30天,之后需要付费才可使用,不过你可以进行学生认证来获得免费使用权限)
3.进入Yolov8官网查看中文官方文档
官方文档非常详细,感兴趣的同学可以直接查看官方文档进行学习
4.开始配置Anaconda虚拟环境
打开Anaconda Powershell Prompt,输入以下内容,创建一个名叫Yolov8的Python3.10虚拟环境
conda create -n yolov8 python=3.10
然后输入以下内容,下载换为国内镜像源,加快下载速度。
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
接着输入以下,进入到刚刚创建的虚拟环境
conda activate yolov8
再输入以下,进行yolov8相关包的安装
pip install ultralytics yolo
如果你的电脑没有GPU,即显卡,那么你训练时候将启动CPU,即处理器,到这就已经完成了环境搭建。
这里暂时不知道AMD卡的GPU该怎么配置,如果你是AMD卡的用户,请另找方法。
如果你电脑有Nvidia卡GPU,那么继续以下操作来启用gpu,加快训练速度。
仍在刚刚的那个环境下,输入以下内容,卸载原来的pytorch。
pip uninstall torch torchvision torchaudio
参考下面链接文章进行pytorch的gpu版本安装,PyCharm的部分可以不参考文章内的方法,如今pycharm能直接支持Anaconda的虚拟环境导入。
记住!安装里面的命令一定要在启动 conda activate yolov8 后在虚拟环境里操作!不然虚拟环境就没有安装上pytorch了!
而且cuda版本不要下载超过pytorch所给的版本,pytorch不一定支持最新版本,不用下载那么新。
卸载旧版本cuda:
cuda 和 cudnn 库的卸载与安装 - 知乎 (zhihu.com)
安装新版本cuda(不用下载最新版本,可以跟下篇pytorch安装的文章交叉看,先看torch对应版本)
Windows10系统pytorch、cuda11.0、cuDNN安装_cuda版本建议安装最新的吗-CSDN博客
安装pytorch参考(如果pytorch没有你对应的cuda版本,直接改所给下载命令中给的版本号,比如下载给的是118,我的运行版本cuda是11.2,就把118改为112)
Pytorch环境详细安装教程【Win10+CUDA升级11.6+cudNN+Anaconda3虚拟环境+pycharm】_cuda11.6对应的cudnn-CSDN博客
验证成功(虚拟环境里):
输入
import torch
torch.cuda.is_available()
显示true,则表示你的gpu可以用于训练。
5.yolov8模板下载
参考文章:windows使用YOLOv8训练自己的模型(0基础保姆级教学)_windows10使用yolov8常见问题-CSDN博客
下载所给模板:文件 (lanzout.com)
将该文件解压到一个不带任何中文的路径里,比如
注意:由于数据集很简略,所以效果很可能不好。
5.Pycharm解释器配置
注意:pyChram有自带汉化,感兴趣的同学可以进行搜索。
打开pycharm,进入项目
选择解释器,启用我们配置好的虚拟环境。
这里你的conda可执行文件如果一开始没有的话,找到你安装anaconda的目录
有些同学的可执行文件的名字可能为 _conda.exe,这导致你在外面看着确实有执行文件,但pyCharm在进入到anaconda的安装目录时却无法选择这个exe文件。这时候直接重命名_conda.exe为conda.exe,pyCharm就可以选中这个文件了。
选中之后点击 使用现有环境
这样解释器就选择好了。用这个方法之后的python终端就不会是直接打开cmd了,而是打开anaconda prompt并进入对应的虚拟环境,方便操作。
6.修改模板内容
进入对应位置,修改训练集、测试集路径
7.开始训练
启动train.py
如果出现进度条不断刷新,那就是成功进入训练。
默认参数是训练100次,慢慢等待。
8.用训练得到模型进行预测
打开模型训练后得到的 runs文件夹,找到训练得到的模型
修改predit.py中所调用的模型,对所选图片进行预测
运行predit.py
按照所给打印内容,发现没有检测到有猫,输出的结果图片存放在下面打印的路径
没有检测到,所以没画框(数据集太简陋了,效果不好)
9.自己制作数据集
数据集数量越大,内容越复杂,则检测效果越好
使用labelimg制作数据集