yolov8实战第九天——pyqt5-yolov8实现道路病害识别系统(参考论文(6000+字)+环境配置+完整部署代码+代码使用说明+训练好的模型+数据集)

本研究开发了一套基于PyQt5和YOLOv8的道路病害检测系统,能自动检测图片、批量图片、视频和RTSP视频流中的病害。系统集成了图片预处理、模型加载、结果解析和显示等功能,提供友好的用户界面,提高了检测效率和准确性。未来将通过扩大训练数据集和引入更多AI功能进一步优化系统。
摘要由CSDN通过智能技术生成

基于 pyqt5-yolov8实现道路病害识别系统,包括图片、批量图片、视频、视频流的道路病害识别。包括病害历史记录栏显示,训练好的模型和数据集,可直接进行工程应用和论文书写。

效果展示(图片检测,检测到的内容添加到历史记录): 

效果展示(批量图片检测,检测到的内容添加到历史记录,保存批量检测结果图片,多个病害并列展示):

 

 效果展示(视频/rtsp流检测,检测到的内容添加到历史记录,跳帧检测,实时运行):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值