Logistic回归小结

Logistic回归小结

1、首先,逻辑回归不是用于回归,而用于分类。
2、假设函数

以二分类为例(可以推广到多分类):
找一个单调可微函数将分类任务真实标记y与线性回归模型的预测值联系起来——Sigmoid函数。
y = 1 1 + e − z y=\frac{1}{1+e^{-z}} y=1+ez1
在这里插入图片描述
假设陈述:if h(z)≥0.5, predict y=1; if h(z)<0.5, predict y=0
其中: z = θ T x z=\theta ^{T}x z=θTx
假设函数也可表示为 h(z)=P(y=1|x;θ),1-h(z)=P(y=0|x;θ),即比较两个条件概率值的大小,将实例x分类到概率较大的那一类。
一个事件的几率(odds)是指该事件发生的概率与该事件不发生的概率的比值。
对数几率(log odds)或logit函数即: l o g i t ( p ) = l o g p 1 − p logit\left ( p \right )=log\frac{p}{1-p} logit(p)=log1pp
对逻辑回归而言,
l o g i t P ( y = 1 ∣ x ; θ ) 1 − P ( y = 1 ∣ x ; θ ) = θ T x logit\frac{P(y=1\mid x;\theta )}{1-P(y=1\mid x;\theta)}=\theta ^{T}x logit1P(y=1x;θ)P(y=1x;θ)=θTx
可以看出,实际上是使用线性回归模型的预测结果去逼近真实标记的对数几率,因此也叫”对数几率回归“。

3、代价函数

如果以线性回归的代价函数如均方误差类推此处的代价函数,则因h(z)是sigmoid,会使代价函数为非凸函数。
在这里插入图片描述
所以省去推导(利用极大似然),最终逻辑回归的代价函数为:
C o s t ( h θ ( x ) , y ) = − y l o g ( h θ ( x ) ) − ( 1 − y ) l o g ( 1 − h θ ( x ) ) Cost(h_{\theta}(x) ,y)=-ylog(h_{\theta }(x))-(1-y)log(1-h_{\theta }(x)) Cost(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x))
总的代价函数:
J ( θ ) = 1 m ∑ m i = 1 C o s t ( h θ ( x ( i ) ) , y ( i ) ) = − 1 m ∑ m i = 1 [ y ( i ) l o g ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] J(\theta )=\frac{1}{m}\sum_{m}^{i=1}Cost(h_{\theta}(x^{(i)}) ,y^{(i)}) =-\frac{1}{m}\sum_{m}^{i=1}\left [ y^{(i)}log(h_{\theta }(x^{(i)}))+(1-y^{(i)})log(1-h_{\theta }(x^{(i)})) \right ] J(θ)=m1mi=1Cost(hθ(x(i)),y(i))=m1mi=1[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]
现在的代价函数为任意阶可导的凸函数,有很好地数学性质。

4、最小化代价函数

最小化J(θ),得出最优参数θ:可以使用梯度下降法、牛顿法等。
梯度下降法:
在这里插入图片描述
牛顿法:
在这里插入图片描述在这里插入图片描述
参考资料
[1]: 吴恩达机器学习
[2]: 《机器学习》周志华
[3]: 《统计学习方法》李航

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值