1. 动态规划算法
1.1 应用场景-背包问题
背包问题:有一个背包,容量为 4 磅 , 现有如下物品
- 要求达到的目标为装入的背包的总价值最大,并且重量不超出
- 要求装入的物品不能重复
1.2 动态规划算法介绍
- 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
- 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
- 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
- 动态规划可以通过填表的方式来逐步推进,得到最优解.
1.3 动态规划算法最佳实践-背包问题
背包问题:有一个背包,容量为 4 磅 , 现有如下物品
- 要求达到的目标为装入的背包的总价值最大,并且重量不超出
- 要求装入的物品不能重复
- 思路分析和图解
(1). 背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分 01 背包和完全背包(完全背包指的是:每种物品都有无限件可用)
(2). 这里的问题属于 01 背包,即每个物品最多放一个。而无限背包可以转化为 01 背包。
(3). 算法的主要思想,利用动态规划来解决。每次遍历到的第 i 个物品,根据 w[i]和 v[i]来确定是否需要将该物品放入背包中。即对于给定的 n 个物品,设 v[i]、w[i]分别为第 i 个物品的价值和重量,C 为背包的容量。再令 v[i][j] 表示在前 i 个物品中能够装入容量为 j 的背包中的最大价值。则我们有下面的结果:
- v[i][0]=v[0][j]=0; //表示 填入表 第一行和第一列是 0
- 当 w[i]> j 时:v[i][j]=v[i-1][j] // 当准备加入新增的商品的容量大于 当前背包的容量时,就直接使用上一个单元格的装入策略
- 当 j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]}
即准备加入的新增的商品的容量小于等于当前背包的容量,
// 装入的方式:
v[i-1][j]: 就是上一个单元格的装入的最大值
v[i] : 表示当前商品的价值
v[i-1][j-w[i]] : 装入 i-1 商品,到剩余空间 j-w[i]的最大值
故,当 j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]} :
- 图解的分析
1.4 动态规划-背包问题的代码实现
public class KnapsackProblem {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] w = {1,4,3}; //物品的重量
int[] val = {1500,3000,2000}; //物品的价值
int m = 4; //背包的容量
int n = val.length; //物品的个数
//创建二维数组
//v[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值
int[][] v = new int[n+1][m+1];
//记录商品的存放情况,定义一个二维数组
int[][] path = new int[n+1][m+1];
//初始化第一行和第一列
for(int i = 0; i < v.length ; i++){
v[i][0] = 0;//第一列设置为0
}
for(int i = 0; i < v[0].length; i++){
v[0][i] = 0 ;//第一行设置0
}
//根据前面得到的公式来动态规划处理
for(int i = 1; i < v.length ; i++){
for(int j = 1; j < v[0].length ; j++){
if(w[i - 1] > j){
v[i][j] = v[i-1][j];
}else{
// v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j -w[i - 1]]);
//为了记录商品存放到背包的情况,需要用if-else处理
if(v[i - 1][j] < val[i - 1] + v[i - 1][j -w[i - 1]] ){
v[i][j] = val[i - 1] + v[i - 1][j -w[i - 1]];
//当前情况记录到path
path[i][j] = 1;
}else{
v[i][j] = v[i - 1][j];
}
}
}
}
//输出一下
for(int i = 0 ; i < v.length ; i++){
for(int j = 0 ; j < v[i].length ; j++ ){
System.out.print(v[i][j] + " ");
}
System.out.println();
}
System.out.println("=================================");
//遍历path
// for(int i = 0 ; i < path.length; i++){
// for(int j = 0 ; j < path[i].length; j++){
// if(path[i][j] == 1)
// System.out.printf("第%d个商品放入到背包\n",i);
// }
// }
for(int i = 0 ; i < path.length; i++){
for(int j = 0 ; j < path[i].length; j++){
System.out.print(path[i][j]+ " ");
}
System.out.println();
}
int i = path.length - 1; //行的最大下标
int j = path[0].length - 1; //列的最大下标
while( i > 0 && j > 0 ){
if(path[i][j] == 1){
System.out.printf("第%d个商品放入到背包\n",i);
j -= w[i-1];
}
i--;
}
}
}
执行结果如下: