大厂程序员必备十大基础算法 -- 动态规划算法

1. 动态规划算法

1.1 应用场景-背包问题

背包问题:有一个背包,容量为 4 磅 , 现有如下物品
在这里插入图片描述

  1. 要求达到的目标为装入的背包的总价值最大,并且重量不超出
  2. 要求装入的物品不能重复

1.2 动态规划算法介绍

  1. 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
  2. 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
  3. 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
  4. 动态规划可以通过填表的方式来逐步推进,得到最优解.

1.3 动态规划算法最佳实践-背包问题

背包问题:有一个背包,容量为 4 磅 , 现有如下物品
在这里插入图片描述

  1. 要求达到的目标为装入的背包的总价值最大,并且重量不超出
  2. 要求装入的物品不能重复
  3. 思路分析和图解
    (1). 背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分 01 背包和完全背包(完全背包指的是:每种物品都有无限件可用)
    (2). 这里的问题属于 01 背包,即每个物品最多放一个。而无限背包可以转化为 01 背包。
    (3). 算法的主要思想,利用动态规划来解决。每次遍历到的第 i 个物品,根据 w[i]和 v[i]来确定是否需要将该物品放入背包中。即对于给定的 n 个物品,设 v[i]、w[i]分别为第 i 个物品的价值和重量,C 为背包的容量。再令 v[i][j] 表示在前 i 个物品中能够装入容量为 j 的背包中的最大价值。则我们有下面的结果:
  • v[i][0]=v[0][j]=0; //表示 填入表 第一行和第一列是 0
  • 当 w[i]> j 时:v[i][j]=v[i-1][j] // 当准备加入新增的商品的容量大于 当前背包的容量时,就直接使用上一个单元格的装入策略
  • 当 j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]}
    即准备加入的新增的商品的容量小于等于当前背包的容量,
    // 装入的方式:
    v[i-1][j]: 就是上一个单元格的装入的最大值
    v[i] : 表示当前商品的价值
    v[i-1][j-w[i]] : 装入 i-1 商品,到剩余空间 j-w[i]的最大值
    故,当 j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]} :
  1. 图解的分析

在这里插入图片描述

1.4 动态规划-背包问题的代码实现

public class KnapsackProblem {

	public static void main(String[] args) {
		// TODO Auto-generated method stub

		int[] w = {1,4,3};           //物品的重量
		int[] val = {1500,3000,2000}; //物品的价值
		int m = 4;                    //背包的容量
        int n = val.length;           //物品的个数
        
        //创建二维数组
        //v[i][j]   表示在前i个物品中能够装入容量为j的背包中的最大价值
        int[][] v = new int[n+1][m+1];
        
        //记录商品的存放情况,定义一个二维数组
        int[][] path = new int[n+1][m+1];
        
        //初始化第一行和第一列
        for(int i = 0; i < v.length ; i++){
        	v[i][0] = 0;//第一列设置为0
        }
        for(int i = 0; i < v[0].length; i++){
        	v[0][i] = 0 ;//第一行设置0
        }
        
        //根据前面得到的公式来动态规划处理
        for(int i = 1; i < v.length ; i++){
        	for(int j = 1; j < v[0].length ; j++){
        		if(w[i - 1] > j){
        			v[i][j] = v[i-1][j];
        		}else{
        			// v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j -w[i - 1]]);
        			//为了记录商品存放到背包的情况,需要用if-else处理
        			if(v[i - 1][j] < val[i - 1] + v[i - 1][j -w[i - 1]] ){
        				v[i][j] = val[i - 1] + v[i - 1][j -w[i - 1]];
        				//当前情况记录到path
        				path[i][j] = 1;
        			}else{
        				v[i][j] = v[i - 1][j];
        			}
        		}
        	}
        }
        
        
        
        //输出一下
        for(int i = 0 ; i < v.length ; i++){
        	for(int j = 0 ; j < v[i].length ; j++ ){
        		System.out.print(v[i][j] + "  ");
        	}
        	System.out.println();
        }
        System.out.println("=================================");
        //遍历path
//        for(int i = 0 ; i < path.length; i++){
//        	for(int j = 0 ; j < path[i].length; j++){
//        		if(path[i][j] == 1)
//        		System.out.printf("第%d个商品放入到背包\n",i);
//        	}
//        }
      for(int i = 0 ; i < path.length; i++){
    	for(int j = 0 ; j < path[i].length; j++){
    		System.out.print(path[i][j]+ "   ");
    	}
    	System.out.println();
    }
        int i = path.length - 1;  //行的最大下标
        int j = path[0].length - 1; //列的最大下标
        while( i > 0 && j > 0 ){
        	if(path[i][j] == 1){
        		System.out.printf("第%d个商品放入到背包\n",i);
        		j -= w[i-1];
        	}
        	i--;
        }
	}

}

执行结果如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值