西瓜书(《机器学习》周志华)习题解析-第1章-绪论

西瓜书(《机器学习》周志华)习题解析-第1章-绪论


1.1 表1.1中若只包含编号为1和4的两个样例,试给出相应的版本空间
编号色泽根蒂敲声好瓜
1青绿蜷缩浊响
2乌黑蜷缩浊响
3青绿硬挺清脆
4乌黑稍蜷沉闷

在书中给出的西瓜数据集中,样本有三个维度:色泽、根蒂、敲声,其中色泽有两个可能的取值 { 青绿,乌黑 } ,根蒂有三个 { 蜷缩,稍蜷,硬挺 } ,敲声有三个 { 浊响,清脆,沉闷 } ,各自加上通配,再加上“好瓜不存在”的空集,假设空间规模 3 * 4 * 4 + 1 = 49,要根据数据集删除与正例不一致的假设,和与反例一致的假设,即得到该问题的版本空间。p

若数据集只有编号1和4,则正例有一个, { 青绿,蜷缩,浊响 } ,与之相符的假设只有 { 青绿,蜷缩,浊响 } { 青绿,蜷缩,* } { 青绿,*,浊响 } { 青绿,*,* } { *,蜷缩,浊响 } { *,蜷缩,* } { *,*,浊响 } { *,*,* } ,8种。反例只有一个, { 乌黑,稍蜷,沉闷 } ,排除了上面8种情况中的最后一种 { *,*,* } ,留下的7种假设都是有可能的,版本空间为:

{ 青绿,蜷缩,浊响 } { 青绿,蜷缩,* } { 青绿,*,浊响 } { 青绿,*,* } { *,蜷缩,浊响 } { *,蜷缩,* } { *,*,浊响 }

1.2 与使用单个合取式来进行假设表示相比,使用“析合范式”将使得假设空间具有更强的表示能力。例如 好瓜 ↔ ( (色泽=*) ∧ (根蒂=蜷缩) ∧ (敲声=*) ) ∨ ( (色泽=乌黑) ∧ (根蒂=*) ∧ (敲声=沉闷) ) 会把“ (色泽=青绿) ∧ (根蒂=蜷缩) ∧ (敲声=清脆) ”和“ (色泽=乌黑) ∧ (根蒂=硬挺) ∧ (敲声=沉闷) ”都分类为“好瓜”。若使用最多包含 k 个合取式的析合范式来表达表1.1西瓜分类问题的假设空间,试估算共有多少种可能的假设。

这篇博客将问题叙述地相当清楚:https://blog.csdn.net/weixin_42702793/article/details/104178807

1.3 若数据包含噪声,则假设空间中有可能不存在与所有训练样本都一致的假设。在此情况下,试设计一种归纳偏好用于假设选择

数据包含噪声,其含义为,存在训练集本身的部分数据,其属性取值对应的标记值是错误的。对于噪声,最理想的情况是去除所有噪声,即将这部分“错误”的数据剔除出训练集。但事实上,单从数据集本身来剔除噪声并无通用的办法,甚至无法直接判断哪些数据属于噪声。通用地讲,我们可以先认为所有不矛盾的数据都是“正确”的,只有那些属性值相同但标记值不同的数据,“相互矛盾”的情况下,才剔除一部分数据使矛盾消除,此时剔除的方法可以视为一种归纳偏好。

例如,属性值相同的两个数据,其标记值分别为正例和反例,可以设计归纳偏好为:始终保留正例的数据,或始终保留反例的数据。

1.4 本章1.4节在论述“没有免费的午餐”定理时,默认使用了“分类错误率”作为性能度量来对分类器进行评估。若换用其他性能度量 l,则式(1.1)将改为(将其中的指示函数改为其它性能度量 l 函数),试证明“没有免费午餐定理”仍成立。

这篇博客将问题叙述地相当清楚:https://blog.csdn.net/dicker6315/article/details/81265066

1.5 试述机器学习能在互联网搜索的哪些环节起什么作用。

(开放性问题,此除略)

### 关于周志华机器学习》(西瓜)第二的学习笔记 #### 模型评估与选择概述 模型评估与选择是机器学习领域的重要组成部分,旨在通过合理的方法评价不同模型的表现并挑选最优者。这一过程不仅涉及如何衡量单个模型的好坏,还包括怎样对比多个候选方案以做出最佳决策。 #### 偏差、方差和噪声的概念解析 偏差度量了学习算法的期望预测与实际结果之间的差距,反映了算法自身的拟合精度;方差描述的是相同规模训练集变化引起的学习效果波动情况,体现了数据扰动带来的影响;而噪声则设定了给定任务下所有可能采用的学习方法能达到的最佳预期泛化误差界限,揭示了问题本身固有的复杂性和挑战性[^2]。 #### 性能度量指标——P-R图及其应用 为了更直观地展示各类分类器的工作特性,通常会绘制精确率-召回率(Precision-Recall, P-R)曲线来辅助分析。当面对多组实验结果时,可以通过观察这些图形相互间的位置关系来进行优劣评判:如果某条曲线始终位于另一条之上,则表明前者具有更好的整体表现;而对于那些存在交点的情况,则需进一步计算各自下方区域面积大小作为判断依据之一。此外,“平衡点”作为一种特殊的性能测度,在特定条件下也能提供有价值的参考信息[^3]。 #### 偏差-方差分解理论简介 该理论为理解学习算法的一般化能力提供了框架性的指导思路,通过对平均测试错误率实施拆分操作,可以深入剖析导致过拟合现象背后的原因所在,并据此探索改进措施的方向。具体而言,总误差由三部分构成——不可约减误差点(即噪声)、平方形式表达出来的偏差项以及线性累加而成的方差成分[^4]。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, auc def evaluate_model_performance(model, X, y): """ 计算并返回PR曲线下面积(AUC),用于量化模型的整体性能。 参数: model (object): 已经训练好的分类模型实例。 X (array-like of shape (n_samples, n_features)): 测试特征矩阵。 y (array-like of shape (n_samples,)): 对应的真实标签向量。 返回: float: PR AUC得分。 """ # 划分训练集/验证集 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 使用训练集拟合模型 model.fit(X_train, y_train) # 获取验证集中各观测对应的概率估计值 probas_pred = model.predict_proba(X_val)[:, 1] # 绘制PR曲线并求得AUC分数 precisions, recalls, _ = precision_recall_curve(y_val, probas_pred) pr_auc_score = auc(recalls, precisions) return pr_auc_score ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值