关于神经网络

目录

理论:

神经网络的结构:

公式推导:

构造损失函数:

求偏导:

代码实现:


理论:

神经网络的结构:

神经网络是由众多简单的神经元连接而成的一个网络,神神经元如下图:

图中输入可以理解为上一l个神经元传递过来的一个刺激,权重会影响刺激的大小,(其中权值越大,对数据的影响也越大,权重也可以是负值,此时是抑制)也就是传递数据的大小,输入是有多个输入的,多个输入与对应权值相乘求和,再经过激活函数处理,讲求和的结果规范到0-1这个范围中,然后通过这个概率判断是否激发下一个神经元。通过调整权值可以得到固定输入下需要的输出值。调整权值的过程也是“学习”和"训练“的过程。

公式推导:

   有这个图为例,1,2代表两个输入值,它两是输入层,y_{1}=w_{1}x_{1}+w_{2}x_{2} ,y_{2}=w_{3}x_{1}+w_{4}x_{2}

经过sigmoid 函数的处理后将数据传入中间层:sigmoid函数为:f(x)=\frac{1}{1+e^{-x}},中间层的输出为:y=w_{5}f(y_{1})+w_{6}f(y_{2}),最后的输出层:f(y)=\frac{1}{1+e^{-y}}.,最后得到的发f(y)是预测值。

构造损失函数:

 损失函数一般是预测值与实际的差的平方乘以1/2得到,乘以1/2是方便下面的求导。损失函数为:loss=\frac{1}{2}(f(y)-y)^{2}.

求偏导:

用损失函数对各个权值求偏导,在利用梯度下将法不断修改各个权值,使得最后得到的预测值接近实际值。

 利用公式w_{new}=w_{old}-\eta *\frac{\partial loss}{\partial w},不断进行迭代,最终使得预测值与真实值最接近。

代码实现:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值