目录
理论:
神经网络的结构:
神经网络是由众多简单的神经元连接而成的一个网络,神神经元如下图:
图中输入可以理解为上一l个神经元传递过来的一个刺激,权重会影响刺激的大小,(其中权值越大,对数据的影响也越大,权重也可以是负值,此时是抑制)也就是传递数据的大小,输入是有多个输入的,多个输入与对应权值相乘求和,再经过激活函数处理,讲求和的结果规范到0-1这个范围中,然后通过这个概率判断是否激发下一个神经元。通过调整权值可以得到固定输入下需要的输出值。调整权值的过程也是“学习”和"训练“的过程。
公式推导:
有这个图为例,1,2代表两个输入值,它两是输入层, ,
经过sigmoid 函数的处理后将数据传入中间层:sigmoid函数为:,中间层的输出为:,最后的输出层:.,最后得到的发f(y)是预测值。
构造损失函数:
损失函数一般是预测值与实际的差的平方乘以1/2得到,乘以1/2是方便下面的求导。损失函数为:.
求偏导:
用损失函数对各个权值求偏导,在利用梯度下将法不断修改各个权值,使得最后得到的预测值接近实际值。
利用公式,不断进行迭代,最终使得预测值与真实值最接近。