三元组表示的矩阵的转置

样例输入

3
4
3
0 1 5
1 2 2
2 1 6

样例输出

4 3 3
1 0 5
1 2 6
2 1 2

外循环扫描A.cols,扫描三元组A的列,一列一列的扫,从0列开始,把第0列的从0-A.nums扫描到的依次放入B,原始三元组小的在上。(其实,把它转置就是非零元按列存放)

#include <iostream>
using namespace std;
#define MAXSIZE 100
typedef int ElemType;

//建立三元组结构体
typedef struct 
{
	int row;
	int col;
	ElemType value;
}Triple;

//稀疏矩阵的三元组表示
typedef struct{
	int rows;
	int cols;
	int nums;
	Triple *data;//类似于int *p; 
}SpMa; 

//初始化
void InitSpMa(SpMa &Sm,int rows,int cols);
void CreatSpMa(SpMa &Sm);
void PrintSpMa(SpMa Sm);
void Transpose(SpMa A,SpMa &B);

int main()
{
	SpMa Sm,B;
	int rows,cols;
	cin>>rows>>cols;
	InitSpMa(Sm,rows,cols);
	InitSpMa(B,rows,cols);
	CreatSpMa(Sm);
	Transpose(Sm,B);
	PrintSpMa(B); 
}
void InitSpMa(SpMa &Sm,int rows,int cols)
{
	Sm.cols=cols;
	Sm.rows=rows;
	Sm.nums=0;
	Sm.data=new Triple[MAXSIZE];
}
void CreatSpMa(SpMa &Sm)
{
	int nums;
	cin>>nums;
	Sm.nums=nums;
	for(int i=0;i<nums;i++)
	{
		cin>>Sm.data[i].row>>Sm.data[i].col>>Sm.data[i].value;
	}
}
void Transpose(SpMa A,SpMa &B)
{
	int k=0;
	B.cols=A.rows;
	B.rows=A.cols;
	B.nums=A.nums;
	for(int i=0;i<A.cols;i++)
	{
		for(int j=0;j<A.nums;j++)
		{
			if(A.data[j].col==i)
			{
				B.data[k].col=A.data[j].row;
				B.data[k].row=A.data[j].col;
				B.data[k].value=A.data[j].value;
				k++;
			}
		}
	}
}
void PrintSpMa(SpMa A)

{

    int i;

    //cout<<"行,列,非零元素个数为:";

    cout<<A.rows<<" "<<A.cols<<" "<<A.nums<<endl;

    //cout<<"稀疏矩阵的三元组表示为:"<<endl;

    for(i=0;i<A.nums;i++)

        cout<<A.data[i].row<<"  "<<A.data[i].col<<"  "<<A.data[i].value<<endl;

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值