成都榆熙:拼多多商家如何批量设置产品属性值?

在上传拼多多产品的时候,都是要填写产品属性的,那么关于拼多多产品属性的填写,你又知道多少呢?一起和榆熙电商小编来看看吧。

电商属性.jpg

一、认识产品属性

产品属性其实就是店铺里面的产品基本信息,能让用户们知道产品的材质、尺码、颜色、库存、品牌等等。所以,填写产品属性是很有必要的。

二、产品属性怎样填写?

商家们需要知道的是:属性值是具体描述属性的参数或特征,属性值的填写需要根据商品实际参数和包装信息填写。

1.针对单个产品设置属性

拼多多运营49.jpg

商家们进入【拼多多商家后台】--找到【商品管理】中的【商品列表】--找到想要修改属性的产品--点击【编辑】--产品基本信息版块出现【商品属性】--按照自己的需求和产品本身情况进行填写即可(注:属性值一定要实事求是,不要恶意修改或是夸大其词,以免受到投诉和平台惩罚)。

2.批量为产品设置属性

商家们进入【拼多多商家后台】--找到【商品管理】中的【商品列表】--点击【批量设置属性】--商家们可以根据产品类目、产品id、产品名称和产品在售状态来进行筛选,然后进行属性设置。

拼多多49.png

三、产品属性填错或乱填会有什么影响?

首先需要说的是,产品属性越详细越好,因为这样买家就能主观的更多认识到你的这款店铺产品,当然属性填写越详细,对产品的转化是能带来一定帮助的。在填写产品属性的时候,商家们一定要按照正确的格式进行填写,要避免属性错放以及乱填的情况,填写完成之后建议商家进行检查。

1.乱填属性可能会是因为产品属性和标题、主图、详情页等没有关联,导致产品属性描述和产品主图介绍不一致,造成产品描述不符的情况。

2.如果产品出现描述不符的情况,平台不仅仅会限制该产品的活动提报申请,如果情节过于严重还会让店铺受到处罚。

好了,以上就是这篇文章的所有内容了,感谢你的阅读,我们下期再见。

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值