keras——accuracy_score公式

本文详细解读Accuracy_score指标,涉及TruePositive、TrueNegative、FalsePositive和FalseNegative的概念及其在模型评估中的应用,帮助理解分类模型性能的关键要素。
摘要由CSDN通过智能技术生成

Accuracy_score公式为,
在这里插入图片描述

其中,

TP:True Positive,表示预测正确的个数

TN:True Negative,表示不属于本类,但预测正确的个数

FP:False Positive,表示将其他类预测为本类的个数

FN:False Negative,表示预测为其他类的个数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值