基础DP4 Common Subsequence

基础DP4 Common Subsequence

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input

abcfbc abfcab
programming contest
abcd mnp

Sample Output

4
2
0

题意: 求最长公共子序列长度

思路:经典的DP序列题,dp[i][j]为字符串1的前i个字符与字符串2的前j个字符的最长公共序列长度,状态方程:
if(s1[i-1]==s2[j-1]) dp[i][j]=dp[i-1][j-1]+1 //当对于字符相同时,当前dp=上一个dp+1;
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]); //当字符不相同时,当前dp=上一个状态的两个dp的最大值

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
using namespace std;
const int manx=1e4+5;
int dp[manx][manx];
int main()
{
    string s1,s2;
    while(cin>>s1>>s2)
    {
        int l1=s1.size(),l2=s2.size();
        for(int i=1;i<=l1;i++)
        {
            for(int j=1;j<=l2;j++)
            {
                if(s1[i-1]==s2[j-1])
                    dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        cout<<dp[l1][l2]<<endl;
        memset(dp,0,sizeof(dp));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值