个性化联邦学习(Personalized Federated Learning,PFL) 介绍(上)

本文介绍了个性化联邦学习(PFL),一种针对异构数据和个性化需求的扩展联邦学习方法。文章讨论了PFL的动机,包括在集中式和传统联邦学习中的局限性,以及PFL如何通过两种策略(全局模型个性化和学习个性化模式)来解决这些问题。文中还概述了各种PFL策略的优缺点,如数据增强、客户端选择、正则化和多任务学习等方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个性化联邦学习(Personalized Federated Learning,PFL) 介绍(上)

根据数据在参与实体之间的特征和样本空间分布方式,迁移学习可以分为水平迁移学习(HFL)垂直迁移学习(VFL)联邦迁移学习(FTL)

可以参考我的上一篇博客:入口

现有的PFL工作主要集中在HFL设置上,HFL的应用场景占了大部分。


PFL的动机

在这里插入图片描述
上图显示了集中式机器学习(CML)、FL和PFL的关键概念和动机。

  • CML:数据在云服务器中汇集在一起以训练ML模型。CML模型从丰富的数据量中获得了很好的泛化效果。然而,由于传输到云的数据量庞大,CML面临带宽和延迟方面的挑战。也不能保护数据隐私或不能很好地个性化。

  • FL:支持以保护隐私的方式对数据孤岛进行协作模型训练,具有通信效率,因为它只传输模型参数,与传输原始数据相比,模型参数的大小只是一小部分。然而,通用的FL方法 (1)对高度异构数据的收敛性差;(2)缺乏解决方案个性化。在存在异构本地数据分布的情况下,这些问题会降低全局FL模型在单个客户机上的性能,甚至可能使受影响的客户机不愿加入FL进程。

  • PL:与传统FL相比,PFL的研究旨在解决这两个挑战。

    1. 异构数据收敛性差: 在iid数据上学习时,FedAvg的准确性会显著降低。这种性能下降归因于客户端漂移现象,这是在非iid的本地数据分布上进行本地训练和同步的结果。

      下图显示了客户端漂移对iid和非iid数据的影响。在FedAvg中,服务器更新趋向于客户端最优的平均值。当数据为iid时,平均模型接近全局最优值 w ∗ w^∗ w,因为它与局部最优值 w 1 ∗ w^∗_1 w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值