Logistic回归/线性Logistic分类器

Logistic回归(Logistic Regression, LR)- 线性Logistic分类器

线性Logistic分类器(linear logistic classifier, LLC)是以下形式的二元分类器:
h ( x ; w , b ) = { + 1 if   σ ( u ( x ) ) > σ t h r e s h o l d − 1 otherwise h(\bold{x};\bold{w},b)= \begin{cases} +1& \text{if} \ \ \sigma(u(\bold{x})) > \sigma_{threshold}\\ -1& \text{otherwise} \end{cases} h(x;w,b)={+11if  σ(u(x))>σthresholdotherwise

  • threshold 一般为 0.5。

  • 我们将其称为线性分类器,是因为它内部的函数 u ( x ) = w ⊤ x + b u(\bold{x}) = \bold{w}^\top\bold{x} + b u(x)=wx+b 是线性的。

  • 而称为逻辑分类器,是因为外部的函数 σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1+e^{-z}} σ(z)=1+ez1 是逻辑函数。


Sigmoid/Logistic函数

σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1+e^{-z}} σ(z)=1+ez1

在这里插入图片描述

  • 取值范围在0到1之间,即 0 ≤ σ ( z ) ≤ 1 0 \leq \sigma(z) \leq 1 0σ(z)1。在二分类问题中可以将预测值映射到0和1之间的概率。

  • 平滑函数,即在整个定义域上都是连续可导的。可以进行梯度下降等优化方法。


LLC的损失函数 - 负对数似然函数(Negative Log Likelihood, NLL)

定义预测概率为: g ( i ) = σ ( w ⊤ x + b ) g^{(i)} = \sigma(\bold{w}^\top\bold{x}+b) g(i)=σ(wx+b),这里 σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1+e^{-z}} σ(z)=1+ez1

则数据集 D n \mathscr{D}_n Dn 的概率 P = ∏ i = 1 n { g ( i ) if   y ( i ) = 1 1 − g ( i ) else P = \prod_{i=1}^n \begin{cases} g^{(i)}& \text{if} \ \ y^{(i)}=1\\ 1-g^{(i)}& \text{else} \end{cases} P=i=1n{g(i)1g(i)if  y(i)=1else

P P P 重写为 P = ∏ i = 1 n g ( i ) y ( i ) ( 1 − g ( i ) ) ( 1 − y ( i ) ) P = \prod_{i=1}^n g^{{(i)}^{y^{(i)}}}(1 - g^{(i)})^{(1-y^{(i)})} P=i=1ng(i)y(i)(1g(i))(1y(i)),两边取对数
log ⁡ P = ∑ i = 1 n ( y ( i ) log ⁡ g ( i ) + ( 1 − y ( i ) ) log ⁡ ( 1 − g ( i ) ) ) \log P = \sum_{i=1}^n (y^{(i)}\log g^{(i)} + (1-y^{(i)})\log (1- g^{(i)})) logP=i=1n(y(i)logg(i)+(1y(i))log(1g(i)))

我们最小化 L = ∑ i = 1 n L n l l ( g ( i ) , y ( i ) ) L = \sum_{i=1}^n L_{nll}(g^{(i)}, y^{(i)}) L=i=1nLnll(g(i),y(i)),其中
L n l l ( g ( i ) , y ( i ) ) = − ( y ( i ) log ⁡ g ( i ) + ( 1 − y ( i ) ) log ⁡ ( 1 − g ( i ) ) ) L_{nll} (g^{(i)}, y^{(i)}) = -(y^{(i)}\log g^{(i)} + (1-y^{(i)})\log (1- g^{(i)})) Lnll(g(i),y(i))=(y(i)logg(i)+(1y(i))log(1g(i)))

负对数似然函数(Negative Log Likelihood, NLL)写作:

L n l l ( g , y ) = − ( y log ⁡ g + ( 1 − y ) log ⁡ ( 1 − g ) ) L_{nll} (g, y) = -(y\log g + (1-y)\log (1- g)) Lnll(g,y)=(ylogg+(1y)log(1g))

也称为 log loss交叉熵(cross entropy)损失函数


机器学习问题:LLC

  • 数据集: D n = { ( x ( 1 ) , y ( 1 ) ) , ⋯   , ( x ( n ) , y ( n ) ) } \mathscr{D}_n = \{(\bold{x}^{(1)}, y^{(1)}),\cdots,(\bold{x}^{(n)}, y^{(n)})\} Dn={(x(1),y(1)),,(x(n),y(n))}

  • 假设空间: H = { h ( x ; w , b ) = σ ( w ⊤ x + b ) } \mathscr{H} = \{h(\bold{x};\bold{w},b) = \sigma(\bold{w}^\top\bold{x}+b)\} H={h(x;w,b)=σ(wx+b)}

  • 损失函数: L n l l ( g ( i ) , y ( i ) ) = − ( y ( i ) log ⁡ g ( i ) + ( 1 − y ( i ) ) log ⁡ ( 1 − g ( i ) ) ) L_{nll} (g^{(i)}, y^{(i)}) = -(y^{(i)}\log g^{(i)} + (1-y^{(i)})\log (1- g^{(i)})) Lnll(g(i),y(i))=(y(i)logg(i)+(1y(i))log(1g(i)))

目标函数(代价函数):
J l r ( w , b ; D n ) = 1 n ∑ i = 1 n L n l l ( σ ( w ⊤ x + b ) , y ( i ) ) + λ ∥ w ∥ 2 J_{lr}(\bold{w},b;\mathscr{D}_n) = \frac{1}{n}\sum_{i=1}^nL_{nll}(\sigma(\bold{w}^\top\bold{x}+b), y^{(i)}) + \lambda\Vert\bold{w}\Vert^2 Jlr(w,b;Dn)=n1i=1nLnll(σ(wx+b),y(i))+λw2

最小化目标函数:

  • 求解使目标函数 J l r J_{lr} Jlr 取最小值的参数 w , b \bold{w},b w,b
  • 目标函数 J l r J_{lr} Jlr 不一定有解析解,可以用梯度下降或随机梯度下降方法

LR的梯度下降法

LR-Gradient-Descent( w i n i t , b i n i t , η , ϵ \bold{w}_{init}, b_{init}, \eta, \epsilon winit,binit,η,ϵ)

    Initialize

         w ( 0 ) = w i n i t \bold{w}^{(0)}=\bold{w}_{init} w(0)=winit

         b ( 0 ) = b i n i t b^{(0)}=b_{init} b(0)=binit

         t = 0 t=0 t=0

    Repeat

         t = t + 1 t = t+1 t=t+1

         w ( t ) = w ( t − 1 ) − η { 1 n ∑ i = 1 n [ σ ( w ( t − 1 ) ⊤ x + b ( t − 1 ) ) − y ( i ) ] x ( i ) + 2 λ w ( t − 1 ) } \bold{w}^{(t)}=\bold{w}^{(t-1)} - \eta\{ \frac{1}{n}\sum_{i=1}^n[\sigma(\bold{w}^{(t-1)\top}\bold{x}+b^{(t-1)})-y^{(i)}]\bold{x}^{(i)} + 2\lambda\bold{w}^{(t-1)} \} w(t)=w(t1)η{n1i=1n[σ(w(t1)x+b(t1))y(i)]x(i)+2λw(t1)}

         b ( t ) = b ( t − 1 ) − η { 1 n ∑ i = 1 n [ σ ( w ( t − 1 ) ⊤ x + b ( t − 1 ) ) − y ( i ) ] } b^{(t)} = b^{(t-1)} - \eta\{ \frac{1}{n}\sum_{i=1}^n[\sigma(\bold{w}^{(t-1)\top}\bold{x}+b^{(t-1)})-y^{(i)}] \} b(t)=b(t1)η{n1i=1n[σ(w(t1)x+b(t1))y(i)]}

    Until   J l r ( w ( t ) , b ( t ) ) − J l r ( w ( t − 1 ) , b ( t − 1 ) ) < ϵ J_{lr}(\bold{w}^{(t)}, b^{(t)}) - J_{lr}(\bold{w}^{(t-1)}, b^{(t-1)}) < \epsilon Jlr(w(t),b(t))Jlr(w(t1),b(t1))<ϵ

    Return   w ( t ) , b ( t ) \bold{w}^{(t)}, b^{(t)} w(t),b(t)

  • 20
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值