联邦学习(FL)研究

联邦学习(FL)研究

本文从数据分区、隐私机制、机器学习模型、通信架构和系统异构5个方面介绍FL的工作。


1. 数据分区

根据数据样本空间和特征空间的分布模式不同,FL可以分为水平联邦学习(HFL)垂直联邦学习(VFL)联邦迁移学习(FTL) 三类。

结合我的前一篇博客:入口

HFL

  • Google在2016年提出了Android手机模型更新的数据联邦建模方案,该系统是水平联邦学习的典型应用,采用差分隐私和安全聚合的方法。

  • BlockFL 的水平联邦学习框架,其中每个移动设备使用区块链网络更新本地学习模型。

  • MOCHA 的联邦学习方法:解决多任务中的安全问题,该方法允许多个站点协同工作来完成任务并确保隐私和安全。多任务联邦学习还提高了原有分布式多任务学习的通信成本,提高了原有机制的容错性。

VHL

对数据进行垂直分割的机器学习算法有很多,如分类、统计分析、梯度下降、安全线性回归、数据挖掘。在一些垂直联邦学习中,也存在基于垂直分区的数据。

  • SecureBoost的垂直联邦学习系统,各方结合用户特征共同训练,提高决策的准确性,是一种无损训练方案。

  • Hardy等人提出了一种基于垂直联邦学习的具有隐私保护的逻辑回归模型。该模型采用了Paillier加性同态加密的流水线实体分析和分布式逻辑回归,在有效保护隐私的同时也提高了分类器的准确率。


2. 隐私机制

保护联邦隐私的常用手段有模型聚合同态加密差分隐私

模型聚合

  • McMahan等提出了一种基于迭代模型平均的深度网络联邦学习框架,通过对每轮更新中的局部模型进行汇总来训练全局模型。

  • PATE方法基于知识的聚合,从由分离数据训练的教师模型转移到属性可以暴露的学生模型。PATE以黑盒的方式将多个模型与非联邦数据集结合起来,为训练数据的保密性提供了准确的保证。

  • Yurochkin等开发了一种用于神经网络联邦学习的贝叶斯非参数框架,该框架通过匹配局部模型中的神经元来建立全局模型。将联邦学习与多任务处理相结合,允许多个用户局部训练不同任务的模型,这也是一种典型的模型聚合方法。

  • 还有研究将联邦学习与区块链相结合,基于区块链交换和更新各设备的模型数据。最后,在区块链协议的保证下,对模型参数进行了安全聚合。

同态加密

加性同构理论是一种能够保证网络安全的理论,保证了网络安全事件不会被中心服务器的数据泄露出模型参数。

  • Hardy等提出了一种联邦逻辑回归模型,该模型使用加性同态方案有效地抵抗诚实和好奇的攻击者。

  • Liu等提出了一种用于迁移学习的联邦学习框架,其隐私机制也采用加性同态加密对模型参数进行加密,以保护数据隐私。

  • Cheng等采用实体对齐技术获取公共数据,构建SecureBoost决策树模型,并采用同态加密对模型参数进行保护。

差分隐私

差分隐私分为全局差分隐私和局部差分隐私。这两种差分隐私都可以保证单个用户的差分需求,但应用场景略有不同。

  • Geyer等提出了一种具有差分隐私的联邦优化算法,该算法应用于客户端以保证其全局差分隐私。训练后的模型本身包含了大量的超参数,以保证通信和准确性。由于噪声的加入,会造成很大的有效性损失。

  • 为了避免盲目添加不必要的噪声,Thakkar等设计了一种基于自适应梯度的范式剪枝方案,以减少噪声对梯度的渗透。

  • 在全局隐私保护有效性有限的情况下,Bhowmick等设计了一种极小最大最优私有化机制,该机制模拟了用户的局部隐私保护策略,限制了潜在攻击者的力量,获得了比严格的局部隐私更好的模型性能。

  • Li等提出了一种新的基于梯度的微分私有参数传递算法,将其应用于非凸联邦语言的建模任务中,达到了接近非私有模型的性能。

  • Qi等人设计了一种基于联邦学习的新闻推荐模型。在多用户设备上训练具有局部检查隐私的模型,随机选择用户将局部模型上传到服务器并聚合成新的全局模型。


3. 机器学习模型

主要考虑三种联邦学习支持的模型:线性模型、决策树和神经网络。

线性模型

线性模型主要分为三类:线性回归、岭回归和Lasso回归。

  • Du等提出了在联邦环境下训练线性模型,解决了实体解析的安全性问题,最终达到了与非私有解决方案相同的精度。

  • Nikolaenko等设计了一种采用同态加密和Yao协议的岭回归系统,其性能最好。

树模型

联邦学习可以用于训练单个或多个决策树,如梯度增强决策树和随机森林。梯度增强决策树(Gradient Boosting Decision Tree, GBDT)算法是近年来被广泛提及的一种算法,主要是因为它在许多分类和回归任务中表现优异。

  • Zhao等首次在回归和二值分类任务中实现了GBDT隐私保护系统。该系统将不同数据所有者训练的回归树安全地聚合到一个集合中,以防止用户数据隐私的泄露。

  • Cheng等提出了一个名为SecureBoost的框架,该框架训练水平和垂直分区数据的梯度提升决策树模型,使用户能够建立一个联邦学习系统。

神经网络模型

  • Zeng等率先在无人机群上实现分布式联邦学习算法,进行联合功率分配和调度,优化联邦学习的收敛速度。该算法的主要步骤是,领头无人机将其余无人机训练的局部飞行模型汇总生成全局飞行模型,并通过群内网络转发给其余无人机。

  • Bonawitz等基于TensorFlow为移动设备构建了一个可扩展的联邦学习系统,该系统可以训练大量的分布式数据模型。

  • Yang等建立了基于数据分区的联邦深度学习框架,实现了在企业数据中的优先应用。

  • liu等将用于交通流预测的GRU (Gated Recurrent Unit)神经网络与联邦学习相结合,提出了一种聚类FedGRU算法,该算法集成了最优全局模型,更准确地捕捉了交通流数据的时空相关性。


4. 通信架构

在联邦环境下,本地更新的灵活性和客户参与影响整个模型的培训有效性。

  • 联邦平均法(federal Averaging, FedAvg)是联邦学习中最常用的模型优化方法。该方法对本地上传的随机下降的梯度数据进行平均,然后对其进行更新并在本地分发。在多任务学习中,FedAvg模型优化方法被证明具有良好的性能。

  • FedProx的模型:结合边缘设备数据进行分布式训练,并使用联邦平均模型优化方法来保证目标任务的鲁棒性和稳定性。

  • 为了解决联邦学习中模型更新通信成本过高的关键问题,Konecny等通过量化、随机旋转和二次采样等方法对模型数据进行压缩,以减少中心服务器与所有用户之间的通信压力。

  • Caldas等采用有损压缩和Federated Dropout来减少服务器到设备的通信。

  • Sattler等提出了一种稀疏三元压缩协议,用于非iid数据的联邦训练,其收敛速度比联邦平均算法快。为了保护自己的数据隐私,解决NonIID数据的不平衡问题,

  • Yang等提出了一种新的联邦平均算法,通过计算不同设备的模型加权平均,对全局模型进行聚合。


5. 系统异构

为了解决系统异构问题,有四种导流方式:异步通信、设备采样、容错机制和模型异构。

异步通信

  • Duchi等利用数据的稀疏性对并行和异步算法进行研究,可以较好地解决训练设备的异构问题。

在内存共享系统中,异步方案很好地解决了设备异构的问题。尽管异步更新在分布式系统中取得了很好的效益,但设备通信的延迟问题加剧了设备异构的缺点。在联邦学习过程中,由于实时通信的需要,根据异步通信方案解决系统的异构性是首选。

设备采样

在一些联邦学习场景中,设备被选择参与训练,而在另一部分场景中,设备主动参与训练。

  • Nishio等为解决资源受限的客户端选择问题,提出了一种新的协议- col fedc,将更多的客户端加入到训练过程中,提高了模型的性能。

  • Kang等设计了一种基于契约理论的激励机制,鼓励拥有高质量数据的本地设备积极参与有效的联邦学习过程,提高学习的准确性。

  • Qi等设计了一种基于联邦学习的新闻推荐模型,该模型也随机选择用户的局部梯度上传到服务器上训练全局模型。

  • Wang等提出了一种基于联邦学习实现端到端通信的新颖方法——pull Reduction with Local Compensation(PRLC)。PRLC的主要思想是在每次迭代中,只有部分设备参与模型更新,不参与的设备通过PRLC方法进行局部更新,以减小与全局模型的差距。最后证明了在强凸性和非凸性情况下,PRLC方法的收敛速度与未压缩方法相同,并且具有更好的可扩展性。

容错机制

  • Wang等重点研究了联邦学习方法,提出了一种控制算法,以确定局部更新和全局参数聚合之间的最佳权衡,以适应设备资源的限制。

  • Yu等通过减少通信,改进了分布式随机梯度下降算法的线性加速特性。

也有一些作品直接忽略了设备的参与,这并不影响多任务学习中联邦学习的效率。

容忍设备故障的另一种选择是通过编码计算引入算法冗余。移动设备上不正确的数据可能导致联邦学习中的欺诈。

  • Kang等提出了一种基于可靠人员选择的联邦学习方案,将声誉作为度量标准,区块链作为声誉管理方案,可以有效防止恶意攻击和篡改。

模型异构

联邦学习网络主要分为三种建模方法:

  1. 单个设备有自己的模型;
  2. 训练一个适用于所有设备的全局模型;
  3. 针对任务训练相关的学习模型。
  • Yu等人提出了一种仅使用正标签进行训练的通用框架,即Federated Averaging with Spreadout (FedAwS),其中服务器在每次迭代后添加一个几何正则化器,以促进类在嵌入空间中展开。然而,在传统训练中,用户还需要使用负标签,这大大提高了训练效率,保证了分类任务的准确性。

  • Zhao等通过对边缘设备之间的一小部分数据进行训练,构建全局模型,提高非iid数据的训练精度。

  • Khodak等在统计学习的背景下设计并实现了一种自适应学习方法,提高了小样本学习和联邦学习的性能。

  • Eichner等考虑在全局模型和特定设备之间进行快速数据自适应训练,以解决联邦训练过程中数据异构的问题。

  • Corinzia等提出了一种名为VIRTUAL的联邦学习算法,该算法将中央服务器和客户端的联邦网络视为贝叶斯网络,采用近似变分推理在网络上进行训练,在联邦学习真实数据集上表现出最先进的性能。与以前的方法不同,重心偏向局部或全球模式。

  • Liang等提出了一种将局部表示学习与全局模型联邦训练相结合的Local Global Federated Averaging(LG-FEDAVG)算法。理论分析表明,局部模型和全局模型的结合减少了数据方差,减少了设备方差,提高了模型在处理异构数据时的灵活性。实验表明,LG-FEDAVG可以降低通信成本,处理异构数据,有效学习模糊保护属性的公平表示。

Reference

[1] Li L, Fan Y, Tse M, et al. A review of applications in federated learning[J]. Computers & Industrial Engineering, 2020, 149: 106854.

  • 22
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值