树状数组(超详细)

      树状数组(binary indexed tree,发明者Peter M.Fenwick 1994),是一种设计新鲜的数组结构,它能够高效地获取数组中连续 k 个数的和

        概括说,树状数组通常用于解决以下问题:

        数组A中的元素可能不断地被修改,怎样才能快速地获取连续几个数地和?

介绍

什么是树状数组?

我们给定一个数组A[ ],我们设一个数组C[ ]满足

C[1] = A[1]

C[2] = A[1] + A[2]

C[3] = A[3]

C[4] = A[1] + A[2] + A[3] + A[4]

C[5] = A[5]

C[6] = A[5] + A[6]

C[7] = A[7]

C[8] = A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7] + A[8]

……

那么C数组就是树状数组。

思考:

C[i] = ?

实际上,我们设 k 为(下标)对应二进制末位0的个数i 从 1 开始算!

那么:C[i] = A[i - 2 ^ k + 1] + ... + A[i]

那么,问题来了给定i,如何求2 ^ k

答案很简单:2 ^ k = i & (-i)

关于i & (-i)

比如对于“010101000”最末有3个0,k 的值应该是3,算出的2 ^ k应该为8

110101000    ->     这是-i的原码

101010111     ->     这是-i的反码

101011000     ->     这是-i的补码

010101000     ->     这是i的补码

000001000     ->     这是(i & (-i))

(000001000)_{2} = (8)_{10}

我们定义它为lowbit(x) = x&(-x)

c++简短函数代码:

int lowbit(int x){
    return x & (-x);
}

求和:

当我们求A[1] + ... + A[x]的之和时,

C[x]如果包含的不一定是1...x的全部和,(比如C[6] = A[5] + A[6])就需要再找一个C[k](显然k < x)累加起来,这个k我们称之为x前驱,举个例子:

A[1] + A[2] + ... + A[6] = C[6] + C[4]

A[1] + A[2] + .. + A[7] = C[7] + C[6] + C[4]

前驱的编号即为比自己小的,最近的,最末连续0比自己多的数

所以x的前驱k = x - lowbit(x),相当于剪掉了自己最左边的1

求和函数:GetSum(x),代码如下:

int getSum(int x){
    int ans = 0;
    for(int i = x; i > 0; i -= lowbit(i)) ans += C[i];
    return ans;
}

直接用一个循环求得Sum,时间复杂度为O(log n)

求区间[x,y]之和怎么办?

getsum(y) - getsum(x - 1)

修改:

修改了某个A[i] ,就需要改动所有包含A[j]C[i]

从图上看就是要更改从叶子节点到根节点路径上所有的C[i]

怎么求一个节点的父节点?

经过观察和探究,前人们得出了这个规律:
父亲:比自己大的,最近的,末位连续0比自己多的数

x节点父亲的编号=x + lowbit(x)

修改函数modify()

void modify(int x, int d){
    for(int i = x; i <= n; i += lowbit(i)) C[i] += d;
}

其时间复杂度依旧为O(logn)

一个小小的问题:

那原本的数组C[i],应该怎么做:

其实调用修改函数,相当于把没有修改为一个值,代码如下。

cin >> n;
for(int i = 1; i <= n; i++){
	cin >> x;
	modify(i, x);
}

小结:

1、在很多情况下,线段树都可以用树状数组实现,凡是能用树状数组实现的一定能用线段树。

2、当题目不满组减法原则的时候,就只能用线段树,不能用树状数组。

3、树状数组的时间复杂的每一个操作都是O(log n)的时间复杂度。

这篇文章就在一个代码中结束了!

觉得博主写的不错的关注支持一下吧!我会继续努力的~

 

  • 14
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
树状数组(Fenwick Tree)是一种用于快速维护数组前缀和的数据结构。它可以在 $O(\log n)$ 的时间内完成单点修改和前缀查询操作,比线段树更加简洁高效。 下面是 Java 实现的树状数组详解: 首先,在 Java 中我们需要使用数组来表示树状数组,如下: ``` int[] tree; ``` 接着,我们需要实现两个基本操作:单点修改和前缀查询。 单点修改的实现如下: ``` void update(int index, int value) { while (index < tree.length) { tree[index] += value; index += index & -index; } } ``` 该函数的参数 `index` 表示要修改的位置,`value` 表示修改的值。在函数内部,我们使用了一个 `while` 循环不断向上更新树状数组中相应的节点,直到到达根节点为止。具体来说,我们首先将 `tree[index]` 加上 `value`,然后将 `index` 加上其最后一位为 1 的二进制数,这样就可以更新其父节点了。例如,当 `index` 为 6 时,其二进制表示为 110,最后一位为 2^1,加上后变为 111,即 7,这样就可以更新节点 7 了。 前缀查询的实现如下: ``` int query(int index) { int sum = 0; while (index > 0) { sum += tree[index]; index -= index & -index; } return sum; } ``` 该函数的参数 `index` 表示要查询的前缀的结束位置,即查询 $[1, index]$ 的和。在函数内部,我们同样使用了一个 `while` 循环不断向前查询树状数组中相应的节点,直到到达 0 为止。具体来说,我们首先将 `sum` 加上 `tree[index]`,然后将 `index` 减去其最后一位为 1 的二进制数,这样就可以查询其前一个节点了。例如,当 `index` 为 6 时,其二进制表示为 110,最后一位为 2^1,减去后变为 100,即 4,这样就可以查询节点 4 的值了。 最后,我们还需要初始化树状数组,将其全部置为 0。初始化的实现如下: ``` void init(int[] nums) { tree = new int[nums.length + 1]; for (int i = 1; i <= nums.length; i++) { update(i, nums[i - 1]); } } ``` 该函数的参数 `nums` 表示初始数组的值。在函数内部,我们首先创建一个长度为 `nums.length + 1` 的数组 `tree`,然后逐个将 `nums` 中的元素插入到树状数组中。具体来说,我们调用 `update(i, nums[i - 1])` 来将 `nums[i - 1]` 插入到树状数组的第 `i` 个位置。 到此为止,我们就完成了树状数组的实现。可以看到,树状数组的代码比线段树要简洁很多,而且效率也更高。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值