目录
1.计算概率
许多问题需要概率估计作为输出。逻辑回归是一种极其有效的概率计算机制。实际上,我们可以通过以下两种方式使用返回的概率:
- 原始概率:不经转换的原始计算结果
- 二元类别:将原始计算结果转换为二元类别
那么,如何 “按原样” 使用概率?假设我们创建一个 逻辑回归(Logistic Regression)模型来预测
本文深入探讨逻辑回归在概率计算中的应用,解释如何通过sigmoid函数确保输出概率在0和1之间。同时,介绍了逻辑回归的损失函数——对数损失,以及正则化在防止过拟合中的关键作用。
目录
许多问题需要概率估计作为输出。逻辑回归是一种极其有效的概率计算机制。实际上,我们可以通过以下两种方式使用返回的概率:
那么,如何 “按原样” 使用概率?假设我们创建一个 逻辑回归(Logistic Regression)模型来预测

被折叠的 条评论
为什么被折叠?