在【机器学习15】中,笔者介绍了神经网络的基本原理。在本篇中,我们使用 TensorFlow 来训练、验证神经网络模型,并探索不同 “层数+节点数” 对模型预测效果的影响,以便读者对神经网络模型有一个更加直观的认识。
目录
1.导入依赖模块
相较于前面的系列文章,需要新增一个模块 seaborn。可以通过 PyCharm 的图形化工具安装,也可以通过命令“pip3 install --index-url https://mirrors.aliyun.com/pypi/simple/ seaborn” 直接安装。
import numpy as np
import pandas as pd
import tensorflow as tf
from matplotlib import pyplot as plt
import seaborn as sns
# The following lines adjust the granularity of reporting.
pd.options.display.max_rows = 10
pd.options.display.float_format = "{:.1f}".format