机器学习16:使用 TensorFlow 进行神经网络编程练习

本文介绍了如何使用 TensorFlow 构建和训练神经网络模型,通过对比线性回归模型,探讨了不同深度和节点数对模型性能的影响。在加州房价数据集上,深度神经网络模型展现出优于线性回归模型的预测能力。
摘要由CSDN通过智能技术生成

在【机器学习15】中,笔者介绍了神经网络的基本原理。在本篇中,我们使用 TensorFlow 来训练、验证神经网络模型,并探索不同 “层数+节点数” 对模型预测效果的影响,以便读者对神经网络模型有一个更加直观的认识。

目录

1.导入依赖模块

2.加载数据集

3.表示数据

4.构建线性回归模型-作为基线

4.1 定义损失打印函数

4.2 定义函数以创建和训练线性回归模型

4.3 定义线性回归模型输出

4.4 调用函数训练、测试模型

4.5 完整代码运行

5.深度神经网络模型

5.1 定义深度神经网络(DNN)模型

5.2 调用函数来构建和训练深度神经网络

5.3 优化深度神经网络的拓扑结构

5.3.1 实验一:增加层数

5.3.2 实验一:减少节点数

6.两种模型结果对比

7.参考文献


1.导入依赖模块

相较于前面的系列文章,需要新增一个模块 seaborn。可以通过 PyCharm 的图形化工具安装,也可以通过命令“pip3 install --index-url https://mirrors.aliyun.com/pypi/simple/ seaborn” 直接安装。

import numpy as np
import pandas as pd
import tensorflow as tf
from matplotlib import pyplot as plt
import seaborn as sns

# The following lines adjust the granularity of reporting.
pd.options.display.max_rows = 10
pd.options.display.float_format = "{:.1f}".format

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值