构建数据集常用的步骤如下所示:
- 收集原始数据。
- 识别特征和标签来源。
- 选择抽样策略。
- 拆分数据。
这些步骤在很大程度上取决于你如何构建 ML 问题。本文主要介绍——数据收集-Collecting Data。
目录
1.3 特征表示-Feature Representation
1. 数据集的大小和质量
“垃圾进垃圾出”
这句话非
构建数据集常用的步骤如下所示:
这些步骤在很大程度上取决于你如何构建 ML 问题。本文主要介绍——数据收集-Collecting Data。
目录
1.3 特征表示-Feature Representation
“垃圾进垃圾出”
这句话非