调制解调原理

本节学习目的:调制的定义,常见调制方法的原理

基带信号具有低频分量,不适宜在无线信道传输,因此我们需要在发送端借助高频正弦波信号(载波信号),对需要传输的信号进行处理,转换成适宜传输的高频信号进行传输,这个处理的过程称为调制,得到的信号称为已调信号。解调是调制的逆过程,就是在接收端通过某种信号处理手段从已调信号中得到基带信号。
下面介绍几种调制方法和其原理,设原基带信号为 m ( t ) m(t) m(t),傅里叶变换为 M ( ω ) M(\omega) M(ω),信道冲激响应为 h ( t ) h(t) h(t),傅里叶变换为 H ( ω ) H(\omega) H(ω),载波信号 cos ⁡ ω c t \cos\omega_ct cosωct

线性调制

线性调制方法是指调制后的信号在频谱上是原来频谱的线性变换(搬移和倍乘)的调制方法。有以下几种:

幅度调制(AM)

幅度调制又称为调幅,调幅的原理如下:
用调制信号与高频正弦波 A cos ⁡ ω c t A\cos\omega_ct Acosωct相乘,并且加上一个直流偏置 A 0 A_{0} A0让信号值为恒正,使得高频载波的幅度随着原信号变化,也就是把原信号处理成:
A 0 + A m ( t ) cos ⁡ ω c t A_{0}+Am(t)\cos\omega_c t A0+Am(t)cosωct
进而输出信号的时域和傅里叶变换为
s m ( t ) = A 0 cos ⁡ ω c t + A [ m ( t ) cos ⁡ ω c t ] ∗ h ( t ) s_{m}(t)=A_{0}\cos\omega_{c}t+A[m(t)\cos\omega_c t]*h(t) sm(t)=A0cosωct+A[m(t)cosωct]h(t)
S m ( ω ) = π A 0 [ δ ( ω + ω c ) + δ ( ω − ω c ) ] + A 2 [ M ( ω + ω c ) + M ( ω − ω c ) ] H ( ω ) S_{m}(\omega)=\pi A_{0}[\delta(\omega+ \omega_{c} )+ \delta(\omega- \omega_{c} ) ]+\frac{A}{2} [M(\omega+\omega_c )+M(\omega-\omega_c )]H(\omega ) Sm(ω)=πA0[δ(ω+ωc)+δ(ωωc)]+2A[M(ω+ωc)+M(ωωc)]H(ω)
由此可见,对于幅度调制信号,在波形上,它的幅度随着基地信号规律变化,在频谱结构上,它的频谱完全是基带信号频谱结构在频域内的简单偏移。

解调:采用包络检波法和相干解调法

缺点:直流分量其实是没有携带信息的,白白消耗了发射功率

抑制载波双边带调制(DSB-SC)

抑制载波双边带调制的原理如下:
直接让低频信号与载波信号 A cos ⁡ ω c t A\cos\omega_ct Acosωct相乘,也就是把原信号处理成:
A m ( t ) cos ⁡ ω c t Am(t)\cos\omega_c t Am(t)cosωct
进而输出信号的时域和傅里叶变换为

s m ( t ) = A [ m ( t ) cos ⁡ ω c t ] ∗ h ( t ) s_{m}(t)=A[m(t)\cos\omega_c t]*h(t) sm(t)=A[m(t)cosωct]h(t)
S m ( ω ) = A 2 [ M ( ω + ω c ) + M ( ω − ω c ) ] H ( ω ) S_{m}(\omega)=\frac{A}{2} [M(\omega+\omega_c )+M(\omega-\omega_c )]H(\omega ) Sm(ω)=2A[M(ω+ωc)+M(ωωc)]H(ω)
优点:相较于AM,没有直流分量,节省功率
缺点:振幅只能反映原信号的绝对值,所以不能采用包络检波法

单边带调制(SSB)

单边带调制的原理如下:
现实中的信号的傅里叶变换,关于 ω \omega ω对称,因此我们可以在抑制载波双边带调制的基础上进行改进,只保留上边带或下边带,从而节省传输功率和减小占用带宽,设双边带信号为 s ( t ) s(t) s(t),上边带信号为 s U S B ( t ) s_{USB}(t) sUSB(t),下边带信号为 s L S B ( t ) s_{LSB}(t) sLSB(t),则:
s ( t ) = A m ( t ) cos ⁡ ω c t s(t)=Am(t)\cos\omega_c t s(t)=Am(t)cosωct
s U S B = 1 2 m ( t ) cos ⁡ ω c t − 1 2 m ^ ( t ) sin ⁡ ω c s_{USB}=\frac{1}{2}m(t)\cos\omega_c t-\frac{1}{2}\hat{m}(t)\sin\omega_c sUSB=21m(t)cosωct21m^(t)sinωc
s L S B = 1 2 m ( t ) cos ⁡ ω c t + 1 2 m ^ ( t ) sin ⁡ ω c s_{LSB}=\frac{1}{2}m(t)\cos\omega_c t+\frac{1}{2}\hat{m}(t)\sin\omega_c sLSB=21m(t)cosωct+21m^(t)sinωc
其中 m ^ ( t ) \hat{m}(t) m^(t)为原信号的希尔伯特变换。
其中,得到单边带信号的方法主要有滤波法和相移法
缺点:难在获得单边带信号,如果采用滤波的方法,则要求滤波器在单边带和双边带交界处傅里叶变换曲线陡峭,难实现;而如果采用相移法,需要设计希尔伯特滤波器,而希尔伯特滤波器相当于一个90°移相器,宽带时难以实现

残留边带调制(VSB)

残留边带调制是对SSB的改进,其原理如下:
不同于SSB中采用低通或高通滤波器的方式得到上下边带信号,我们采用具有互补滚降特性的一组高通、低通滤波器来得到上下边带信号
在这里插入图片描述
得到的效果如下,它不像SSB完全抑制某一个边带,而是使其残留一小部分
在这里插入图片描述
虽然占用带宽增加了一些,但一定程度上克服了难以实现的问题

角调制

角度调制就是让高频载波的频率或者相位随着原信号变化,而振幅保持恒定,分别称为频率调制和相位调制,其具体原理如下:

频率调制

频率调制又称为调频,频率调制的原理是,让载波信号的瞬时频率随着原信号线性变化,调制后信号的瞬时频率为:
ω ( t ) = ω c + K f s ( t ) \omega(t)=\omega_c+K_{f}s(t) ω(t)=ωc+Kfs(t)
其中 K f K_{f} Kf为一个可调的常数,称为调频系数。调制后信号的表达式为:
A cos ⁡ ( ω c t + K f ∫ − ∞ t s ( t ) ) A\cos(\omega_{c}t+K_{f}\int_{-\infty}^{t}s(t)) Acos(ωct+Kfts(t))

相位调制

相位调制又称为调相,相位调制的原理是,让载波信号的瞬时相位加上原信号,调制后的信号为:

s m ( t ) = A cos ⁡ [ ω c t + ϕ ( t ) ] s_{m}(t)=A\cos[\omega_c t+\phi(t)] sm(t)=Acos[ωct+ϕ(t)]

频率调制属于非线性调制,调制后的信号不是原调制信号频谱的线性搬移,二十原频谱的非线性变换,会产生与原频谱不同的新频率成分。

本博客的markdown代码请见如下,需要的话可以直接复制:

本节学习目的:调制的定义,常见调制方法的原理

基带信号具有低频分量,不适宜在无线信道传输,因此我们需要在发送端借助高频正弦波信号(载波信号),对需要传输的信号进行处理,转换成适宜传输的高频信号进行传输,这个处理的过程称为**调制**,得到的信号称为已调信号。解调是调制的逆过程,就是在接收端通过某种信号处理手段从已调信号中得到基带信号。
下面介绍几种调制方法和其原理,设原基带信号为$m(t)$,傅里叶变换为$M(\omega)$,信道冲激响应为$h(t)$,傅里叶变换为$H(\omega)$,载波信号$\cos\omega_ct$;
# 线性调制
线性调制方法是指调制后的信号在频谱上是原来频谱的线性变换(搬移和倍乘)的调制方法。有以下几种:
## 幅度调制(AM)
幅度调制又称为调幅,调幅的原理如下:
用调制信号与高频正弦波$A\cos\omega_ct$相乘,并且加上一个直流偏置$A_{0}$让信号值为恒正,使得高频载波的幅度随着原信号变化,也就是把原信号处理成:
$$
A_{0}+Am(t)\cos\omega_c t
$$
进而输出信号的时域和傅里叶变换为
$$
s_{m}(t)=A_{0}\cos\omega_{c}t+A[m(t)\cos\omega_c t]*h(t)
$$
$$
S_{m}(\omega)=\pi A_{0}[\delta(\omega+ \omega_{c} )+ \delta(\omega- \omega_{c} ) ]+\frac{A}{2} [M(\omega+\omega_c  )+M(\omega-\omega_c  )]H(\omega )
$$
由此可见,对于幅度调制信号,在波形上,它的幅度随着基地信号规律变化,在频谱结构上,它的频谱完全是基带信号频谱结构在频域内的简单偏移。

解调:采用包络检波法和相干解调法

缺点:直流分量其实是没有携带信息的,白白消耗了发射功率
## 抑制载波双边带调制(DSB-SC)
抑制载波双边带调制的原理如下:
直接让低频信号与载波信号$A\cos\omega_ct$相乘,也就是把原信号处理成:
$$
Am(t)\cos\omega_c t
$$
进而输出信号的时域和傅里叶变换为

$$
s_{m}(t)=A[m(t)\cos\omega_c t]*h(t)
$$
$$
S_{m}(\omega)=\frac{A}{2} [M(\omega+\omega_c  )+M(\omega-\omega_c  )]H(\omega )
$$
优点:相较于AM,没有直流分量,节省功率
缺点:振幅只能反映原信号的绝对值,所以不能采用包络检波法

## 单边带调制(SSB)
单边带调制的原理如下:
现实中的信号的傅里叶变换,关于$\omega$对称,因此我们可以在抑制载波双边带调制的基础上进行改进,只保留上边带或下边带,从而节省传输功率和减小占用带宽,设双边带信号为$s(t)$,上边带信号为$s_{USB}(t)$,下边带信号为$s_{LSB}(t)$,则:
$$
s(t)=Am(t)\cos\omega_c t
$$
$$
s_{USB}=\frac{1}{2}m(t)\cos\omega_c t-\frac{1}{2}\hat{m}(t)\sin\omega_c
$$
$$
s_{LSB}=\frac{1}{2}m(t)\cos\omega_c t+\frac{1}{2}\hat{m}(t)\sin\omega_c
$$
其中$\hat{m}(t)$为原信号的希尔伯特变换。
其中,得到单边带信号的方法主要有滤波法和相移法
缺点:难在获得单边带信号,如果采用滤波的方法,则要求滤波器在单边带和双边带交界处傅里叶变换曲线陡峭,难实现;而如果采用相移法,需要设计希尔伯特滤波器,而希尔伯特滤波器相当于一个90°移相器,宽带时难以实现
## 残留边带调制(VSB)
残留边带调制是对SSB的改进,其原理如下:
不同于SSB中采用低通或高通滤波器的方式得到上下边带信号,我们采用具有互补滚降特性的一组高通、低通滤波器来得到上下边带信号

得到的效果如下,它不像SSB完全抑制某一个边带,而是使其残留一小部分

虽然占用带宽增加了一些,但一定程度上克服了难以实现的问题

# 角调制
角度调制就是让高频载波的频率或者相位随着原信号变化,而振幅保持恒定,分别称为频率调制和相位调制,其具体原理如下:
## 频率调制
频率调制又称为调频,频率调制的原理是,让载波信号的瞬时频率随着原信号线性变化,调制后信号的瞬时频率为:
$$
\omega(t)=\omega_c+K_{f}s(t) 
$$
其中$K_{f}$为一个可调的常数,称为调频系数。调制后信号的表达式为:
$$
A\cos(\omega_{c}t+K_{f}\int_{-\infty}^{t}s(t)) 
$$


## 相位调制
相位调制又称为调相,相位调制的原理是,让载波信号的瞬时相位加上原信号,调制后的信号为:

$$
s_{m}(t)=A\cos[\omega_c t+\phi(t)]
$$


频率调制属于非线性调制,调制后的信号不是原调制信号频谱的线性搬移,二十原频谱的非线性变换,会产生与原频谱不同的新频率成分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值