【泛函分析】紧性

定义. 设 S S S 是距离空间, A ⊂ S A\subset S AS,
(1) 若对于 ∀ ϵ > 0 \forall \epsilon \gt 0 ϵ>0, 总存在有限个半径为 ϵ \epsilon ϵ 的开球覆盖 A A A, 则称 A A A 为完全有界集.
(2) 若 A A A 中的任一序列都存在收敛的子列, 则称 A A A 为列紧集.
(3) 若 A A A 中的任一序列都存在收敛于 A A A 中元素的子列, 则称 A A A 为紧集.
由定义可知, 紧集是列紧集.

定理1. 设 A A A 是距离空间 S S S 的子集, 则 A A A 是完全有界集的充要条件是: A A A 中任一序列必存在 Cauchy 子列.

证明:

充分性: 反证法, 若 A A A 不是完全有界集, 则存在 ϵ > 0 \epsilon\gt 0 ϵ>0, 使得 A A A 不能被有限个半径为 ϵ \epsilon ϵ 的开球覆盖. 构造点列 { y k } \{y_{k}\} {yk} 如下: 选取 y 1 ∈ A y_{1}\in A y1A; 此时 A − U ( y 1 , ϵ ) ≠ ∅ A-U(y_{1}, \epsilon) \neq \emptyset AU(y1,ϵ)=, 否则可推出 A ⊆ U ( y 1 , ϵ ) A\subseteq U(y_{1}, \epsilon) AU(y1,ϵ), 与假设条件矛盾, 从 A − U ( y 1 , ϵ ) A-U(y_{1}, \epsilon) AU(y1,ϵ) 中任取一点作为 y 2 y_{2} y2; 同理, 此时 A − U ( y 1 , ϵ ) − U ( y 2 , ϵ ) ≠ ∅ A-U(y_{1}, \epsilon)-U(y_{2}, \epsilon)\neq \emptyset AU(y1,ϵ)U(y2,ϵ)=, 从中任取一点作为 y 3 y_{3} y3; … 以此类推, 可得到点列 { y k } \{y_{k}\} {yk}. 显然, 对于 ∀ y n ∈ { y k } \forall y_{n} \in \{y_{k}\} yn{yk}, 有:
y n ∈ A − U ( y 1 , ϵ ) − ⋯ − U ( y n − 1 , ϵ ) y_{n}\in A-U(y_{1}, \epsilon)-\cdots-U(y_{n-1}, \epsilon) ynAU(y1,ϵ)U(yn1,ϵ)
易证当 m ≠ n m\neq n m=n 时, d ( y m , y n ) > ϵ d(y_{m}, y_{n}) \gt \epsilon d(ym,yn)>ϵ, 因此序列 { y k } \{y_{k}\} {yk} 不存在 Cauchy 子列, 与已知条件矛盾. 因此 A A A 是完全有界集.

必要性: 任取 A A A 中一序列 { y k } \{y_{k}\} {yk}. 因为 A A A 是完全有界集, 所以对于任意 i ∈ N + i\in \mathbb{N}^{+} iN+, 存在有限个半径为 1 i \frac{1}{i} i1 的开球覆盖 A A A, 记 U i \mathcal{U}_{i} Ui 为它们的集合. 可以构造 { y k } \{y_{k}\} {yk} 的子列 { y k n } \{y_{k_{n}}\} {ykn} 如下: U 1 \mathcal{U}_{1} U1 中必然存在一个开球 U ( x 1 , 1 ) U(x_{1}, 1) U(x1,1) 包含 { y k } \{y_{k}\} {yk} 中的无限多项, 否则将推出 A A A 包含 { y k } \{y_{k}\} {yk} 中的有限项, 从 U ( x 1 , 1 ) U(x_{1}, 1) U(x1,1) 中任取 y k 1 ∈ { y k } y_{k_{1}}\in \{y_{k}\} yk1{yk}; 此时 U 2 \mathcal{U}_{2} U2 中必然存在一个开球 U ( x 2 , 1 2 ) U(x_{2}, \frac{1}{2}) U(x2,21) 包含 { y k } ∩ U ( x 1 , 1 ) \{y_{k}\}\cap U(x_{1},1) {yk}U(x1,1) 中的无限多项, 否则将推出 { y k } ∩ U ( x 1 , 1 ) \{y_{k}\}\cap U(x_{1},1) {yk}U(x1,1) 包含 { y k } \{y_{k}\} {yk} 中的有限项, 从 U ( x 2 , 1 2 ) U(x_{2}, \frac{1}{2}) U(x2,21) 中任取 y k 2 ∈ { y k } ∩ U ( x 1 , 1 ) y_{k_{2}}\in \{y_{k}\}\cap U(x_{1},1) yk2{yk}U(x1,1); … 以此类推, 可得到子列 { y k n } \{y_{k_{n}}\} {ykn}. 由构造方式可知, 子列中任意一项 y k n y_{k_{n}} ykn 满足:

y k n ∈ ⋂ i = 1 n − 1 U ( x i , 1 i ) , n ≥ 2 y_{k_{n}}\in \bigcap\limits_{i=1}^{n-1}U(x_{i}, \frac{1}{i}), n\geq2 ykni=1n1U(xi,i1),n2

易证 { y k n } \{y_{k_{n}}\} {ykn} 满足: 对于任意的 ϵ > 0 \epsilon\gt 0 ϵ>0, 存在正整数 k > 2 ϵ k\gt \frac{2}{\epsilon} k>ϵ2, 此时对于任意的正整数 m > n > k m\gt n \gt k m>n>k, 有 y k m , y k n ∈ U ( x k , 1 k ) y_{k_{m}}, y_{k_{n}}\in U(x_{k}, \frac{1}{k}) ykm,yknU(xk,k1), 即

d ( y k m , y k n ) < 2 k < ϵ d(y_{k_{m}}, y_{k_{n}}) \lt \frac{2}{k}\lt \epsilon d(ykm,ykn)<k2<ϵ
所以 { y k n } \{y_{k_{n}}\} {ykn} 是 Cauchy 列.

推论. (1) 列紧集是完全有界集. (2) 若 S S S 是完备的, 则完全有界集是列紧的.

定理2. A A A 是紧集的充要条件是: 对于 A A A 的任一开覆盖, 都存在有限子覆盖.

证明:

充分性: 反证法, 设 A A A 中的序列 { x n } \{x_{n}\} {xn} 不存在收敛于 A A A 中的子列, 则对于 ∀ y ∈ A \forall y\in A yA, 不存在任何 { x n } \{x_{n}\} {xn} 的子列收敛于它, 进而 ∃ r y > 0 \exists r_{y}\gt 0 ry>0, n y ∈ N + n_{y}\in \mathbb{N}^{+} nyN+, 使得 U ( y , r y ) ∩ { x n ∣ n > n y } = ∅ U(y, r_{y}) \cap \{x_{n}|n\gt n_{y}\}=\emptyset U(y,ry){xnn>ny}=; 显然, 集族 ⋃ y ∈ A U ( y , r y ) \bigcup\limits_{y\in A} U(y, r_{y}) yAU(y,ry) A A A 的一个开覆盖, 由于 A A A 是紧集, 所以其存在有限子覆盖, 记 ⋃ i = 1 k U ( y i , r y i ) \bigcup\limits_{i=1}^{k}U(y_{i}, r_{y_{i}}) i=1kU(yi,ryi), y i ∈ A y_{i}\in A yiA 为一个子覆盖, 记 N = max ⁡ i n y i N=\mathop{\max}\limits_{i} n_{y_{i}} N=imaxnyi, 则
{ x n ∣ n > N } ∩ A ⊆ { x n ∣ n > N } ∩ ⋃ i = 1 k U ( y i , r y i ) ⊆ ⋃ i = 1 k ( { x n ∣ n > n y i } ∩ U ( y i , r y i ) ) = ∅ \{x_{n}|n \gt N\}\cap A \subseteq \{x_{n}|n \gt N\}\cap \bigcup\limits_{i=1}^{k}U(y_{i}, r_{y_{i}}) \subseteq \bigcup\limits_{i=1}^{k} \big(\{x_{n}|n\gt n_{y_{i}}\}\cap U(y_{i}, r_{y_{i}})\big)=\emptyset {xnn>N}A{xnn>N}i=1kU(yi,ryi)i=1k({xnn>nyi}U(yi,ryi))=
进而有 { x n ∣ n > N } ∩ A = ∅ \{x_{n}|n \gt N\}\cap A=\emptyset {xnn>N}A=, 这与 { x n } \{x_{n}\} {xn} A A A 中的序列相矛盾, 因此 { x n } \{x_{n}\} {xn} 必存在收敛于 A A A 中的子列.
必要性: 反证法, 设 A A A 的开覆盖 { G α ∣ α ∈ I } \{G_{\alpha}|\alpha\in I\} {GααI} 不存在有限子覆盖. 由于紧集是完全有界集, 因此对于 ∀ n ∈ N + \forall n\in \mathbb{N}^{+} nN+, A A A 可被有限个半径为 1 n \frac{1}{n} n1 的开球覆盖, 记为 { U ( x , 1 n ) ∣ x ∈ E n } \{U(x, \frac{1}{n})|x\in E_{n}\} {U(x,n1)xEn}. 显然 { G α ∣ α ∈ I } \{G_{\alpha}|\alpha\in I\} {GααI} 不存在对 ⋃ x ∈ E n U ( x , 1 n ) \bigcup\limits_{x\in E_{n}}U(x, \frac{1}{n}) xEnU(x,n1) 的有限子覆盖, 则必然存在 x n ∈ E n x_{n}\in E_{n} xnEn, 使得 U ( x n , 1 n ) U(x_{n}, \frac{1}{n}) U(xn,n1) 不可被有限个 { G α ∣ α ∈ I } \{G_{\alpha}|\alpha\in I\} {GααI} 中的开集覆盖, 否则, 将会推出 ⋃ x ∈ E n U ( x , 1 n ) \bigcup\limits_{x\in E_{n}}U(x, \frac{1}{n}) xEnU(x,n1) 可被 { G α ∣ α ∈ I } \{G_{\alpha}|\alpha\in I\} {GααI} 中有限个开集覆盖, 矛盾. 由此可得到序列 { x n } \{x_{n}\} {xn}, 根据已知条件, { x n } \{x_{n}\} {xn} 存在收敛于 A A A 中元的子列 { x n k } \{x_{n_{k}}\} {xnk} , 记其极限为 a a a. 显然存在 { G α ∣ α ∈ I } \{G_{\alpha}|\alpha\in I\} {GααI} 中的一个开球包含 a a a, 记为 G α 0 G_{\alpha_{0}} Gα0. 由开集的性质可知, 存在 ϵ > 0 \epsilon \gt 0 ϵ>0, 使得 U ( a , ϵ ) ⊂ G α 0 U(a,\epsilon)\subset G_{\alpha_{0}} U(a,ϵ)Gα0. 取足够大的整数 K K K 使得 1 n K < ϵ 2 \frac{1}{n_{K}}\lt \frac{\epsilon}{2} nK1<2ϵ d ( x n K , a ) < ϵ 2 d(x_{n_{K}},a)\lt \frac{\epsilon}{2} d(xnK,a)<2ϵ, 则对于 ∀ x ∈ U ( x n K , 1 n K ) \forall x\in U(x_{n_{K}}, \frac{1}{n_{K}}) xU(xnK,nK1), d ( x , a ) ≤ d ( x , x n K ) + d ( x n K , a ) < ϵ 2 + ϵ 2 = ϵ d(x,a)\leq d(x,x_{n_{K}})+d(x_{n_{K}}, a)\lt \frac{\epsilon}{2}+ \frac{\epsilon}{2}=\epsilon d(x,a)d(x,xnK)+d(xnK,a)<2ϵ+2ϵ=ϵ, 因此有 U ( x n K , 1 n K ) ⊂ U ( a , ϵ ) ⊂ G α 0 U(x_{n_{K}}, \frac{1}{n_{K}})\subset U(a, \epsilon)\subset G_{\alpha_{0}} U(xnK,nK1)U(a,ϵ)Gα0, 而根据 { x n } \{x_{n}\} {xn} 的定义, U ( x n K , 1 n K ) U(x_{n_{K}}, \frac{1}{n_{K}}) U(xnK,nK1) 不可被有限个 { G α ∣ α ∈ I } \{G_{\alpha}|\alpha\in I\} {GααI} 中的开球覆盖, 产生矛盾. 因此 A A A 的任意开覆盖都存在有限子覆盖.

推论. 紧集是有界闭集.

证明: 设 A A A 是紧集, 由(1)可知 A A A 是列紧集, 由定理1的推论可知, A A A 是完全有界集, 因此是有界集. 下面证明 A A A 是闭集. 设 { x n } \{x_{n}\} {xn} A A A 中的任一收敛序列, 极限为 x x x, 由于 A A A 是紧集, 因此 { x n } \{x_{n}\} {xn} 存在收敛于 A A A 中元的子列 { x n k } \{ x_{n_{k}} \} {xnk} , 极限记为 y ∈ A y\in A yA, 而显然 { x n k } \{ x_{n_{k}} \} {xnk} 的极限和 { x n } \{x_{n}\} {xn} 的极限相等, 因此 x = y ∈ A x=y\in A x=yA, 所以 A A A 是闭集, 证毕.

定理3. A A A 是列紧集的充要条件是: A ‾ \overline{A} A 是紧集.
证明:
充分性: 即证明 A A A 中的任一序列 { x n } \{x_{n}\} {xn} 必存在收敛的子列. 由于 A ⊂ A ‾ A\subset \overline{A} AA, 所以序列 { x n } \{x_{n}\} {xn} 也是 A ‾ \overline{A} A 中的序列, 由于 A ‾ \overline{A} A 是紧集, 所以 { x n } \{x_{n}\} {xn} 存在收敛的子列, 证毕.
必要性: 即证明 A ‾ \overline{A} A 中的任一序列 { x n } \{x_{n}\} {xn} 必存在收敛于 A ‾ \overline{A} A 中元的子列. 由闭包的性质可知, 对于 ∀ x n \forall x_{n} xn, 必然存在 y n ∈ A y_{n}\in A ynA, 使得 d ( x n , y n ) < 1 n d(x_{n}, y_{n})\lt \frac{1}{n} d(xn,yn)<n1, { y n } \{y_{n}\} {yn} 构成 A A A 中的一序列. 由于 A A A 是列紧集, 所以 { y n } \{y_{n}\} {yn} 存在收敛子列 { y n k } \{y_{n_{k}}\} {ynk}, 设其收敛于 y y y, 根据闭包的性质可知 y ∈ A ‾ y\in \overline{A} yA. 下面证明 { x n k } \{x_{n_{k}}\} {xnk} 也收敛于 y y y.
d ( x n k , y ) ≤ d ( x n k , y n k ) + d ( y n k , y ) ≤ 1 n k + d ( y n k , y ) d(x_{n_{k}},y)\leq d(x_{n_{k}},y_{n_{k}})+d(y_{n_{k}},y)\leq \frac{1}{n_{k}} + d(y_{n_{k}},y) d(xnk,y)d(xnk,ynk)+d(ynk,y)nk1+d(ynk,y)
显然 lim ⁡ k → ∞ 1 n k + d ( y n k , y ) = 0 \lim\limits_{k\rightarrow \infty}\frac{1}{n_{k}}+d(y_{n_{k}},y)= 0 klimnk1+d(ynk,y)=0, 且 d ( x n k , y ) ≥ 0 d(x_{n_{k}},y)\geq 0 d(xnk,y)0, 由夹逼定理, lim ⁡ k → ∞ d ( x n k , y ) = 0 \lim\limits_{k\rightarrow \infty} d(x_{n_{k}},y) = 0 klimd(xnk,y)=0, { x n k } \{x_{n_{k}}\} {xnk} 也收敛于 y y y, 证毕.

推论. 列紧集是完全有界集.

定理4. 完全有界集是有界集.
证明:
A A A 是完全有界集, 任取 ϵ > 0 \epsilon\gt 0 ϵ>0, 存在有限个半径为 ϵ \epsilon ϵ 的开球覆盖 A A A, 记为 { U ( x i , ϵ ) ∣ x i ∈ E } \{U(x_{i}, \epsilon)|x_{i}\in E\} {U(xi,ϵ)xiE}, 则对于 ∀ x , x ′ ∈ A \forall x, x' \in A x,xA, 有
d ( x , x ′ ) ≤ ∑ i = 1 ∣ E ∣ [ d ( x , x i ) + d ( x i , x ′ ) ] ≤ 2 ∣ E ∣ ϵ d(x,x')\leq \sum\limits_{i=1}^{|E|}[d(x,x_{i})+d(x_{i},x')]\leq 2|E|\epsilon d(x,x)i=1E[d(x,xi)+d(xi,x)]2Eϵ
所以 A A A 是有界集.

定理5. 在有限维赋范空间中, 有界集是列紧集, 有界闭集是紧集.
证明:
S S S n n n 维赋范空间, A A A 是其中的有界集, 即证 A A A 中的任一序列 { x n } \{x_{n}\} {xn} 存在收敛子列. S S S n n n 维欧式空间 K n \mathbb{K}^{n} Kn 拓扑同构 ( K \mathbb{K} K S S S 的数域), 即存在双射 T : S ↦ K n T: S\mapsto \mathbb{K}^{n} T:SKn b > a > 0 b\gt a\gt 0 b>a>0, 使得:
a ∥ x ∥ ≤ ∥ T x ∥ ≤ b ∥ x ∥ a\parallel x \parallel \leq \parallel Tx \parallel \leq b\parallel x \parallel axTxbx
其中 ∥ ⋅ ∥ \parallel \cdot \parallel K n \mathbb{K}^{n} Kn 中的范数. 因为 A A A 是有界集, 所以存在 M ≥ 0 M\geq 0 M0, 使得 ∥ x ∥ ≤ M \parallel x\parallel\leq M xM, 对于 K n \mathbb{K}^{n} Kn 中的序列 { T x n } \{Tx_{n}\} {Txn}, 有
∥ T x n ∥ ≤ b ∥ x n ∥ ≤ b M \parallel Tx_{n}\parallel\leq b\parallel x_{n}\parallel \leq bM TxnbxnbM
{ T x n } \{Tx_{n}\} {Txn} 也是有界的. 由 Weierstrass 定理可知, 序列 { T x n } \{Tx_{n}\} {Txn} 存在收敛子列 { T x n k } \{Tx_{n_{k}}\} {Txnk}, 记其极限为 y y y,
∥ x n k − T − 1 y ∥ ≤ 1 a ∥ T x n k − y ∥ \parallel x_{n_{k}} -T^{-1}y \parallel \leq \frac{1}{a} \parallel Tx_{n_{k}}-y\parallel xnkT1ya1Txnky
显然 lim ⁡ k → ∞ 1 a ∥ T x n k − y ∥ = 0 \lim\limits_{k\rightarrow \infty}\frac{1}{a} \parallel Tx_{n_{k}}-y\parallel=0 klima1Txnky=0, 且 ∥ x n k − T − 1 y ∥ ≥ 0 \parallel x_{n_{k}} -T^{-1}y \parallel\geq 0 xnkT1y0, 由夹逼定理, lim ⁡ k → ∞ ∥ x n k − T − 1 y ∥ = 0 \lim\limits_{k\rightarrow \infty}\parallel x_{n_{k}} -T^{-1}y \parallel=0 klimxnkT1y=0, { x n k } \{x_{n_{k}}\} {xnk} 收敛于 T − 1 y T^{-1}y T1y, 证毕.
A A A S S S 中的有界闭集, 则其是列紧集, 由定理3的推论可知, A A A 是紧集.

定理6. (F. Riesz) 设 S S S 为一赋范空间, A A A 为其闭子空间, 且 A ≠ S A\neq S A=S, 则对于 ∀ ϵ > 0 \forall \epsilon \gt 0 ϵ>0, 存在 x ∈ A x\in A xA ∥ x ∥ = 1 \parallel x \parallel = 1 x=1, 使得 d ( x , A ) ≥ ϵ d(x, A)\geq \epsilon d(x,A)ϵ.
证明:
任取 x 0 ∈ S − A x_{0}\in S-A x0SA, 由于 A A A 是闭集, 所以 d ( x 0 , A ) > 0 d(x_{0}, A)\gt 0 d(x0,A)>0. 因为 0 < ϵ < 1 0 \lt \epsilon \lt 1 0<ϵ<1, 所以存在 x 1 ∈ A x_{1}\in A x1A 使得 d ( x 1 , x 0 ) = d ( x 0 , A ) / ϵ > d ( x 0 , A ) d(x_{1}, x_{0}) = d(x_{0}, A) /\epsilon \gt d(x_{0}, A) d(x1,x0)=d(x0,A)/ϵ>d(x0,A). 对 x 1 − x 0 x_{1}-x_{0} x1x0 进行归一化, 得到 x = x 1 − x 0 d ( x 1 − x 0 ) x=\frac{x_{1}-x_{0}}{d(x_{1}-x_{0}) } x=d(x1x0)x1x0, 则 ∥ x ∥ = 1 \parallel x \parallel=1 x=1. 对于 ∀ x ′ ∈ A \forall x' \in A xA,
∥ x ′ − x ∥ = ∥ x ′ − x 1 − x 0 d ( x 1 , x 0 ) ∥ = ∥ x 0 − ( x 1 − d ( x 1 , x 0 ) x ′ ) ∥ d ( x 1 , x 0 ) ≥ d ( x 0 , A ) d ( x 0 , A ) / ϵ = ϵ \parallel x'-x \parallel = \parallel x' - \frac{x_{1}-x_{0}}{ d(x_{1}, x_{0}) } \parallel =\frac{\parallel x_{0}-(x_{1}-d(x_{1}, x_{0})x') \parallel}{d(x_{1}, x_{0})} \geq \frac{d(x_{0}, A)}{d(x_{0}, A)/\epsilon} = \epsilon xx=xd(x1,x0)x1x0=d(x1,x0)x0(x1d(x1,x0)x)d(x0,A)/ϵd(x0,A)=ϵ
证毕.

定理7. 无限维赋范空间中的闭单位球不是列紧集.
证明:
记无限维赋范空间 S S S 中的闭单位球为 A A A. 任取 x 1 ∈ A x_{1}\in A x1A, 定义 E 1 = s p a n { x 1 } E_{1}=\mathrm{span}\{x_{1}\} E1=span{x1}, 可知 E 1 E_{1} E1 A A A 的闭子空间, 且 E 1 ≠ S E_{1} \neq S E1=S. 由定理6可知, 存在 x 2 ∈ A x_{2}\in A x2A, 使得 d ( x 2 , E 1 ) ≥ 1 2 d(x_{2}, E_{1}) \geq \frac{1}{2} d(x2,E1)21, 定义 E 2 = s p a n { x 1 , x 2 } E_{2}=\mathrm{span}\{x_{1}, x_{2}\} E2=span{x1,x2}, 可知 E 2 E_{2} E2 A A A 的闭子空间, 且 E 2 ≠ S E_{2}\neq S E2=S, … 以此类推, 可得到 A A A 中的序列 { x n } \{x_{n}\} {xn}. 对于任意正整数 m > n m \gt n m>n, x n ∈ E n ⊆ E m − 1 x_{n} \in E_{n} \subseteq E_{m-1} xnEnEm1, 所以 d ( x m , x n ) ≥ d ( x m , E m − 1 ) ≥ 1 2 d( x_{m}, x_{n} )\geq d(x_{m}, E_{m-1}) \geq \frac{1}{2} d(xm,xn)d(xm,Em1)21. 由此可知序列 { x n } \{x_{n}\} {xn} 没有收敛子列, 进而可知 A A A 不是列紧集.
未完待续…

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值