泛函分析笔记04:紧性与列紧性

1.6紧性

定义 2.14: X X X 为距离空间(或拓扑空间), A ⊆ A \subseteq A X X X, 如果 A A A任一开覆盖均存在有限的子覆盖, 则 称 A A A 为紧集; 当 X X X 为紧集时,称 X X X 为紧空间。

定义 2.15:设 F = { F α } α ∈ I \mathcal{F}=\left\{F_{\alpha}\right\}_{\alpha \in I} F={Fα}αI 为拓扑空间 X X X 中一闭集 族, 如果 F \mathcal{F} F任意有限个集的交非空可推出 F α ≠ F_{\alpha} \neq Fα= ∅ \emptyset ,则称F具 “有限交”性;若 X X X 中任一闭集族都具 “有限交” 性, 则称 X X X 具“有限交”性。

定理 2.16: 拓扑空间 X X X ⟺ X \Longleftrightarrow X X 具 “有限交”性。

定理2.17:紧空间的闭子集是紧的。

定理2.18:距离空间(或Hausdorff空间)中的紧子集是闭的。

定理2.19:任意个紧空间的乘积是紧的。

定理2.20:连续映射把紧集映成紧集。

定理2.21:紧空间上的实值连续函数必有最大值和最小值。

定理2.22:紧距离空间 X X X Y Y Y上的双射 f f f如果连续,则 f f f是同胚映射。

1.7距离空间中的紧性

定义 2.23: 设 ( X , d ) (X, d) (X,d) 为距空, A ⊆ X A \subseteq X AX, 如果 A A A任一 点列均有收敘子列,则称 A A A 是列紧的; 当 X X X 列紧时, 称 ( X , d ) (X, d) (X,d) 为列紧空间。

注:列紧集的子集也列紧; 列紧空间是完备的。

定义 2.24: 设 ( X , d ) (X, d) (X,d) 为距空, A , B ⊆ X , ε > 0 A, B \subseteq X, \varepsilon>0 A,BX,ε>0, 如 果 ∀ x ∈ A ∃ y ∈ B \forall x \in A \quad \exists y \in B xAyB 使 d ( y , x ) < ε d(y, x)<\varepsilon d(y,x)<ε, 则称 B B B A A A ε \varepsilon ε-网; 如果 ∀ ε > 0 , A \forall \varepsilon>0, A ε>0,A 均有有限的 ε − \varepsilon- ε 网, 则称 A A A 是全有界的。

注:

  1. A A A 全有界 ⟹ A \Longrightarrow A A 有界;

  2. A A A 全有界 ⟹ A \Longrightarrow A A 可分; B = ⋃ n = 1 ∞ B n B=\bigcup_{n=1}^{\infty} B_{n} B=n=1Bn 最多可数、稠于 A A A, 其中 B n B_{n} Bn A A A 的有限 1 n − \frac{1}{n}- n1

  3. A A A 全有界, 则对 ∀ ε > 0 \forall \varepsilon>0 ε>0 存在 A A A 的有限子集 B B B 作为 A A A ε − \varepsilon- ε

全有界和列紧的关系

定理 2.25: 距离空间中, 列紧 ⟹ \Longrightarrow 全有界; 当空间 完备时, 全有界 $\Longrightarrow $列紧。

紧、列紧和有界间的关系

定理2.26:距离空间中, 紧 ⟺ \Longleftrightarrow 列紧 + + + 闭。

例1:在完备的距离空间中, A A A 列紧 ⟺ ∀ ε > \Longleftrightarrow \forall \varepsilon> ε> 0 , A 0, A 0,A 有列紧的 ε − \varepsilon- ε 网。

例2 : K n \mathbb{K}^{n} Kn 中, 列紧 ⟺ \Longleftrightarrow 有界; 紧 ⟺ \Longleftrightarrow 有界+闭。

定理2.27: ( ( ( Arzela ) C [ a , b ] ) C[a, b] )C[a,b] 中,子集 A A A 列紧 ⟺ \Longleftrightarrow
(1) A A A 一致有界: ∃ M ∈ [ 0 , ∞ ) \exists M \in[0, \infty) M[0,) 使 ∣ x ( t ) ∣ ≤ M , ∀ x ∈ A , ∀ t ∈ |x(t)| \leq M, \forall x \in A, \forall t \in x(t)M,xA,t [ a , b ] [a, b] [a,b]
(2) A A A 等度连续 : ∀ ε > 0 , ∃ δ > 0 \forall \varepsilon>0, \exists \delta>0 ε>0,δ>0 使 ∀ x ∈ A , ∀ t 1 , t 2 ∈ [ a , b ] \forall x \in A, \forall t_{1}, t_{2} \in[a, b] xA,t1,t2[a,b], 当 ∣ t 1 − \mid t_{1}- t1 t 2 ∣ < δ t_{2} \mid<\delta t2<δ 时有 ∣ x ( t 1 ) − x ( t 2 ) ∣ < ε 0 \left|x\left(t_{1}\right)-x\left(t_{2}\right)\right|<\varepsilon_{0} x(t1)x(t2)<ε0

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值