【泛函分析】区间上的单调有界函数必存在左右极限,间断点必为第一类间断点

定理1. 函数在区间上存在左右极限等价于: 所有间断点(如果存在的话)都为第一类间断点.

证明: 充分性: 对于区间上任意一点, 若该点为连续点, 则该点处存在左右极限, 若该点为间断点, 则其为第一类间断点, 因而该点处存在左右极限.
必要性: 在每一点处左右极限都存在, 因此若该点处是间断点, 必为第一类间断点.

定理2. 若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的单调有界函数, 则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上每一点处存在左右极限.

证明: 设 f ( x ) f(x) f(x) 是单调递增的, 证明 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上每一点处存在右极限: 对于 ∀ x 0 ∈ [ a , b ] \forall x_0\in [a,b] x0[a,b], 设 α = inf ⁡ x ∈ ( x 0 , b ] f ( x ) \alpha = \inf\limits_{x\in (x_0, b]}f(x) α=x(x0,b]inff(x), 由 f ( x ) f(x) f(x) 有界可知 α < ∞ \alpha\lt \infty α<, 则对于 ∀ ϵ > 0 \forall \epsilon \gt 0 ϵ>0, ∃ x ′ ∈ ( x 0 , b ] \exists x'\in (x_0, b] x(x0,b], f ( x ′ ) − α < ϵ f(x')-\alpha\lt \epsilon f(x)α<ϵ, 由于 f ( x ) f(x) f(x) 是单调递增的, 因此当 x ∈ ( x 0 , x ′ ] x\in (x_0,x'] x(x0,x] 时, f ( x ′ ) − α < ϵ f(x')-\alpha\lt \epsilon f(x)α<ϵ. 综上可知 α \alpha α x 0 x_0 x0 处的右极限.
证明 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上每一点处存在左极限: 对于 ∀ x 0 ∈ [ a , b ] \forall x_0\in [a,b] x0[a,b], 设 α = inf ⁡ x ∈ [ a , x 0 ) f ( x ) \alpha = \inf\limits_{x\in [a, x_0)}f(x) α=x[a,x0)inff(x), 由 f ( x ) f(x) f(x) 有界可知 α < ∞ \alpha\lt \infty α<, 则对于 ∀ ϵ > 0 \forall \epsilon \gt 0 ϵ>0, ∃ x ′ ∈ [ a , x 0 ) \exists x'\in [a, x_0) x[a,x0), α − f ( x ′ ) < ϵ \alpha-f(x')\lt \epsilon αf(x)<ϵ, 由于 f ( x ) f(x) f(x) 是单调递增的, 因此当 x ∈ [ x ′ , x 0 ) x\in [x', x_0) x[x,x0) 时, α − f ( x ′ ) < ϵ \alpha - f(x')\lt \epsilon αf(x)<ϵ. 综上可知 α \alpha α x 0 x_0 x0 处的左极限.
f ( x ) f(x) f(x) 是单调递减时同理可证.

推论. f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的间断点必为第一类间断点.

注: 这里仅以闭区间为例, 对于其他类型的区间上述结论亦成立.

参考 百度题库

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值