连续函数(二)

1.间断点是函数不连续的点,包括:左右极限存在且相等,左右极限存在但不等,左右极限至少有一个不存在

2.左右极限相等但不等于该点函数取值或函数在该点无定义为可去间断点

3.左右极限存在但不相等为跳跃间断点

4.左右极限至少有一个是无穷为无穷间断点

5.左右极限均不存在且都不是无穷为振荡间断点

6.可去间断点和跳跃间断点称为第一类间断点,无穷间断点和振荡间断点称为第二类间断点

7.开区间上单调函数的间断点必为第一类间断点

8.狄利克雷函数在实数域上处处不连续

9.黎曼函数在一切无理点连续,在一切有理点不连续,但极限均存在且为0

上一篇我们介绍了连续函数的基本概念,今天我们来讨论一下不连续的情况。

1

间断点

不连续,直观上就是函数图像在某点上断开,因此也称间断点顾名思义,是与连续函数对立的,我们回顾一下连续函数的定义:

21f1b7da3547a85a157d9158f002f741.png

相反的,不满足连续函数有三种情形:

386637df56a30d9f67f84f48d5657922.png

对于第一种情形,我们称为可去间断点,比如下面的函数:

9332e8c44e587889053ce6fcbdc51af9.png

函数在x=1点无定义,但其左右极限存在且相等。

对于第二种情形,我们称为跳跃间断点。比如我们反复提到的符号函数sgn(x):

545c95a9b9f2dc2eb3ec5e4726d5bb63.png

其在0点的左右极限均存在但不相等.

对于第三种情形,又可以分为无穷间断点振荡间断点。前者是指函数在该点的单侧极限至少有一个为无穷,比如三角函数tanx在π/2处的左右极限均不存在:

75dae0b34007a3ea107b9daa19bbac21.png

dddd1e2b07764ad98be4674da6f0083b.png

又比如下面的指数函数与幂函数的复合函数:

ceea8a93dbb7aef427f22b2f15b482ac.png

f24698db7f35ed10e1f55956c59052c7.png

它在原点的左极限存在,但右极限是无穷大量。

后者是指极限不为无穷且“完全不存在”的间断点,此类称为振荡间断点,它与无穷间断点的区别去,无穷虽然极限不存在,但可以用∞来表示,而振荡间断点不仅极限不存在,而且没办法用符号来表示。它属于最特殊最重要的间断点。比如下面的函数在原点上在两个常数间无限变动多次:

63a0ae9a828a14f85a2dc7bf6b0bf8f3.png

可去间断点和跳跃间断点称为第一类间断点,无穷间断点和振荡间断点称为第二类间断点。对于可去间断点,我们可以重新定义函数使得其连续,比如下面的函数:

f1060b0d03cb53c5e36b382614dcef6b.png

2edb04e2a336bb18253b45a459b84f5f.png

关于间断点,有一个重要的结论需要掌握:

73c69fa5763bbcafd48b1eaf9bf6a9d1.png

开区间(a,b)上的单调函数的间断点必为第一类间断点

505fe79ac04f44e11eefe6487819ea68.png

2

Dirichlet函数的连续性

在函数周期性的时候,我们就介绍了狄利克雷函数:

3b1b2783fc7d21f32eb728cedaf42300.png

传送门:映射与函数(二)

我们知道它是周期函数,但没有最小周期。现在我们来讨论它的连续性。

39501859bb78c05ebeb14176af0a6bdf.png

所以,狄利克雷函数在实数域上处处不连续

这里要说明一下数列的取法。对于有理数x0,上面的xn很好取的:

3cd1d43692f3e4ae066f5411a27e3d3d.png

对于任意一个无理数x0,如何取一个数列使得其每一项是有理数但极限是x0。我们知道,数列不一定可以写成通项,因此,对于无理数x0,我们用其小数形式来表示:

ed0de66e5a287e972e1936ec5c1ef1ae.png

注:证明确界存在原理用的方法,传送门——实数系的连续性(二)

然后我们取数列:

e976323910417426f6dd9e0ca040ea54.png

这样每一项都是有理数,但极限是无理数x0.

3

Riemann函数的连续性

我们再来看一个著名函数——黎曼函数(Riemann function)的连续性。首先,来看一下它的形式:

d1f61e37ec892db5d08fb08f9ffc0f7f.png

这个也是周期函数,也可以说,为了使得它是周期函数而定义在原点的取值为1:

12b35b544266aa626469a82887b74ec8.png

注意,p与q互质(共因数只有1的两个非零整数),因此1与它本身互质.

现在我们证明下面一个结论:

ec7fcbc64a3fd9b49842ec15a549a963.png

这里难以费解的就是红色部分的内容,要理解它,首先要理解下面这个结论:

d2be894ae423eb52d7e35e0312f24fe1.png

对于x而言,如果是无理数,R(x)必定为0,如果是有理数,R(x)只能取:

91e9242099b2d5e71b01abc34b1f2a1f.png

因此对于任意小的ε,R(x)大于等于ε的个数是有限的。不妨记这有限数里面最小的那个是1/k,又因为R(x)=1/p,因此满足这样的R(x)对应的x的最大分母是k,而分母小于等于k的有理数点数(即定义域x)是有限的(这里注意区分x和R(x))

da087bf5f39f28a2257063eda3ac2620.png

然后在这有限的有理数点中,找到一个使得下面取值最小的点(取值为0的去掉):

af90dd300e55478c01aaa245c47ffe3e.png

也就是说,在分母小于等于k的所有有理数中,必然有下面式子成立:

703e77afe728f1986e33592f40314949.png

那么其逆否命题成立,也即满足下面式子的有理数x只能是上面集合(分母小于等于k的有理数)关于有理数集Q的补集(分母大于k的有理数)

be7fa89b78730b24347c52af5bbe6632.png

注意,上面两个命题都是单方向,不是"⇔"。即不是所有满足大于δ的x都落在分母小于等于k的有理数集合中,也并非所有分母大于k的有理数集合都满足小于δ。举个例子:

d578ca7f0874157d629e45b231d6e4af.png

但是所有满足小于δ的x都落在分母大于k的有理数集合中,所有分母小于等于k的有理数x都满足大于等于δ

根据黎曼函数的极限我们可以得到下面一个结论:

黎曼函数R(x)在一切无理点连续,在一切有理点不连续。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值