2014年IMO第4题

在这里插入图片描述

△ A B C \triangle ABC ABC 中, B C BC BC 上有一点 P P P 满足 ∠ B A P = ∠ A C B \angle BAP=\angle ACB BAP=ACB, 还有一点 Q Q Q 满足 ∠ A = Q A C = ∠ A B C \angle A=QAC=\angle ABC A=QAC=ABC. 分别延长 A P AP AP, A Q AQ AQ 一倍至 M M M, N N N. 求证: B M BM BM, C N CN CN 交于 △ A B C \triangle ABC ABC 的外接圆上.

证明:

在这里插入图片描述

显然 ∠ A Q C = ∠ A P B = ∠ B A C \angle AQC=\angle APB=\angle BAC AQC=APB=BA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值