【泛函分析】压缩映射定理

本文介绍了压缩映射定理的基本概念及证明过程。压缩映射是一种特殊类型的映射,它确保了在完备距离空间中存在唯一的不动点。文章通过构造Cauchy序列的方法详细展示了不动点的存在性和唯一性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

设有距离空间 X X X(范数为 d d d),映射 T : X → X T: X \rightarrow X T:XX,若存在 0 ≤ λ < 1 0\leq \lambda<1 0λ<1,使得
d ( T x , T y ) ≤ λ d ( x , y ) , x , y ∈ X d(Tx,Ty)\leq \lambda d(x,y), \quad x,y\in X d(Tx,Ty)λd(x,y),x,yX
则称 T T T 是压缩的.

引理

压缩映射 T T T 是连续的, 即对于任意的收敛序列 x n → x x_{n} \rightarrow x xnx,有 T x n → T x Tx_{n}\rightarrow Tx TxnTx.

证明:
d ( T x n , T x ) ≤ λ d ( x n , x ) → 0 d(Tx_{n}, Tx) \leq \lambda d(x_{n},x) \rightarrow 0 d(Txn,Tx)λd(xn,x)0

压缩映射定理

X X X 是完备距离空间, 则:

(1) X X X 中的任意一个序列 { x n } \{x_{n}\} {xn} x n + 1 = T x n x_{n+1} = T x_{n} xn+1=Txn 收敛,且极限为 T T T 的不动点.

(2)压缩映射 T T T 的不动点存在且唯一.

证明:(1)首先证明 { x n } \{x_{n}\} {xn} 是 Cauchy 序列:
d ( x n + 1 , x n ) = d ( T x n , T x n − 1 ) ≤ λ d ( x n , x n − 1 ) d(x_{n+1},x_{n}) = d(Tx_{n},Tx_{n-1})\leq \lambda d(x_{n},x_{n-1}) d(xn+1,xn)=d(Txn,Txn1)λd(xn,xn1)
进而
d ( x n + 1 , x n ) ≤ λ n d ( x 1 , x 0 ) d(x_{n+1},x_{n})\leq \lambda^{n}d(x_{1},x_{0}) d(xn+1,xn)λnd(x1,x0)

p p p 是任意的正整数.

λ = 0 \lambda=0 λ=0 时, d ( x n + p , x n ) = 0 d(x_{n+p}, x_{n}) = 0 d(xn+p,xn)=0.

λ > 0 \lambda>0 λ>0 时, { x n } \{x_{n}\} {xn} 是柯西列.

d ( x n + p , x n ) ≤ d ( x n + p , x n + p − 1 ) + d ( x n + p − 1 , x n + p − 2 ) + . . . + d ( x n + 1 , x n ) ≤ ( λ n + p − 1 + . . . + λ n ) d ( x 1 , x 0 ) = λ n 1 − λ p 1 − λ d ( x 1 , x 0 ) ≤ λ n 1 − λ d ( x 1 , x 0 ) = λ n ⋅ d ( x 1 , x 0 ) 1 − λ \begin{align} d(x_{n+p},x_{n})&\leq d({x_{n+p},x_{n+p-1}})+d({x_{n+p-1},x_{n+p-2}})+...+d(x_{n+1},x_{n})\\ &\leq (\lambda^{n+p-1}+...+\lambda^{n})d(x_{1},x_{0})\notag \\ &=\lambda^{n}\frac{1-\lambda^{p}}{1-\lambda}d(x_{1},x_{0})\notag \\ &\leq \frac{\lambda^{n}}{1-\lambda}d(x_{1},x_{0})\notag \\ &=\lambda^{n}\cdot \frac{d(x_1,x_0)}{1-\lambda}\notag \end{align} d(xn+p,xn)d(xn+p,xn+p1)+d(xn+p1,xn+p2)+...+d(xn+1,xn)(λn+p1+...+λn)d(x1,x0)=λn1λ1λpd(x1,x0)1λλnd(x1,x0)=λn1λd(x1,x0)

因此对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ N = log ⁡ λ ( 1 − λ ) ϵ d ( x 1 , x 0 ) + 1 \exists N=\log_{\lambda} \frac{(1-\lambda)\epsilon}{d(x_1,x_0)}+1 N=logλd(x1,x0)(1λ)ϵ+1,使得当 n > N n>N n>N 时,恒有 ∣ d ( x n + p , x n ) ∣ ≤ ϵ |d(x_{n+p},x_{n})|\leq \epsilon d(xn+p,xn)ϵ.

又因为空间 X X X 是完备的,因此 { x n } \{x_{n}\} {xn} 收敛.

进而
x = lim ⁡ n → ∞ x n = lim ⁡ n → ∞ T x n − 1 = T lim ⁡ n → ∞ x n − 1 = T x x=\lim\limits_{n\rightarrow \infty}x_{n} = \lim\limits_{n\rightarrow \infty} Tx_{n-1} = T \lim\limits_{n\rightarrow \infty}x_{n-1} = Tx x=nlimxn=nlimTxn1=Tnlimxn1=Tx

(2)任取一点 x 1 ∈ X x_1\in X x1X,构造序列 { x n } \{x_n\} {xn} x n + 1 = T x n x_{n+1}=T x_{n} xn+1=Txn,由(1)可知它收敛,且极限为 T T T 的不动点,存在性成立. 若唯一性不成立,则存在两个不同 T T T X X X 中的不动点 x 1 x_1 x1 x 2 x_2 x2 d ( x 1 , x 2 ) = d ( T x 1 , T x 2 ) ≤ λ d ( x 1 , x 2 ) < d ( x 1 , x 2 ) d(x_1, x_2)=d(Tx_1,Tx_2)\leq \lambda d(x_1,x_2)<d(x_1,x_2) d(x1,x2)=d(Tx1,Tx2)λd(x1,x2)<d(x1,x2),显然矛盾,唯一性成立.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值