定义
设有距离空间
X
X
X(范数为
d
d
d),映射
T
:
X
→
X
T: X \rightarrow X
T:X→X,若存在
0
≤
λ
<
1
0\leq \lambda<1
0≤λ<1,使得
d
(
T
x
,
T
y
)
≤
λ
d
(
x
,
y
)
,
x
,
y
∈
X
d(Tx,Ty)\leq \lambda d(x,y), \quad x,y\in X
d(Tx,Ty)≤λd(x,y),x,y∈X
则称
T
T
T 是压缩的.
引理
压缩映射 T T T 是连续的, 即对于任意的收敛序列 x n → x x_{n} \rightarrow x xn→x,有 T x n → T x Tx_{n}\rightarrow Tx Txn→Tx.
证明:
d
(
T
x
n
,
T
x
)
≤
λ
d
(
x
n
,
x
)
→
0
d(Tx_{n}, Tx) \leq \lambda d(x_{n},x) \rightarrow 0
d(Txn,Tx)≤λd(xn,x)→0
压缩映射定理
若 X X X 是完备距离空间, 则:
(1) X X X 中的任意一个序列 { x n } \{x_{n}\} {xn}: x n + 1 = T x n x_{n+1} = T x_{n} xn+1=Txn 收敛,且极限为 T T T 的不动点.
(2)压缩映射 T T T 的不动点存在且唯一.
证明:(1)首先证明
{
x
n
}
\{x_{n}\}
{xn} 是 Cauchy 序列:
d
(
x
n
+
1
,
x
n
)
=
d
(
T
x
n
,
T
x
n
−
1
)
≤
λ
d
(
x
n
,
x
n
−
1
)
d(x_{n+1},x_{n}) = d(Tx_{n},Tx_{n-1})\leq \lambda d(x_{n},x_{n-1})
d(xn+1,xn)=d(Txn,Txn−1)≤λd(xn,xn−1)
进而
d
(
x
n
+
1
,
x
n
)
≤
λ
n
d
(
x
1
,
x
0
)
d(x_{n+1},x_{n})\leq \lambda^{n}d(x_{1},x_{0})
d(xn+1,xn)≤λnd(x1,x0)
设 p p p 是任意的正整数.
当 λ = 0 \lambda=0 λ=0 时, d ( x n + p , x n ) = 0 d(x_{n+p}, x_{n}) = 0 d(xn+p,xn)=0.
当 λ > 0 \lambda>0 λ>0 时, { x n } \{x_{n}\} {xn} 是柯西列.
d ( x n + p , x n ) ≤ d ( x n + p , x n + p − 1 ) + d ( x n + p − 1 , x n + p − 2 ) + . . . + d ( x n + 1 , x n ) ≤ ( λ n + p − 1 + . . . + λ n ) d ( x 1 , x 0 ) = λ n 1 − λ p 1 − λ d ( x 1 , x 0 ) ≤ λ n 1 − λ d ( x 1 , x 0 ) = λ n ⋅ d ( x 1 , x 0 ) 1 − λ \begin{align} d(x_{n+p},x_{n})&\leq d({x_{n+p},x_{n+p-1}})+d({x_{n+p-1},x_{n+p-2}})+...+d(x_{n+1},x_{n})\\ &\leq (\lambda^{n+p-1}+...+\lambda^{n})d(x_{1},x_{0})\notag \\ &=\lambda^{n}\frac{1-\lambda^{p}}{1-\lambda}d(x_{1},x_{0})\notag \\ &\leq \frac{\lambda^{n}}{1-\lambda}d(x_{1},x_{0})\notag \\ &=\lambda^{n}\cdot \frac{d(x_1,x_0)}{1-\lambda}\notag \end{align} d(xn+p,xn)≤d(xn+p,xn+p−1)+d(xn+p−1,xn+p−2)+...+d(xn+1,xn)≤(λn+p−1+...+λn)d(x1,x0)=λn1−λ1−λpd(x1,x0)≤1−λλnd(x1,x0)=λn⋅1−λd(x1,x0)
因此对于 ∀ ϵ > 0 \forall \epsilon>0 ∀ϵ>0, ∃ N = log λ ( 1 − λ ) ϵ d ( x 1 , x 0 ) + 1 \exists N=\log_{\lambda} \frac{(1-\lambda)\epsilon}{d(x_1,x_0)}+1 ∃N=logλd(x1,x0)(1−λ)ϵ+1,使得当 n > N n>N n>N 时,恒有 ∣ d ( x n + p , x n ) ∣ ≤ ϵ |d(x_{n+p},x_{n})|\leq \epsilon ∣d(xn+p,xn)∣≤ϵ.
又因为空间 X X X 是完备的,因此 { x n } \{x_{n}\} {xn} 收敛.
进而
x
=
lim
n
→
∞
x
n
=
lim
n
→
∞
T
x
n
−
1
=
T
lim
n
→
∞
x
n
−
1
=
T
x
x=\lim\limits_{n\rightarrow \infty}x_{n} = \lim\limits_{n\rightarrow \infty} Tx_{n-1} = T \lim\limits_{n\rightarrow \infty}x_{n-1} = Tx
x=n→∞limxn=n→∞limTxn−1=Tn→∞limxn−1=Tx
(2)任取一点 x 1 ∈ X x_1\in X x1∈X,构造序列 { x n } \{x_n\} {xn}: x n + 1 = T x n x_{n+1}=T x_{n} xn+1=Txn,由(1)可知它收敛,且极限为 T T T 的不动点,存在性成立. 若唯一性不成立,则存在两个不同 T T T 在 X X X 中的不动点 x 1 x_1 x1 和 x 2 x_2 x2, d ( x 1 , x 2 ) = d ( T x 1 , T x 2 ) ≤ λ d ( x 1 , x 2 ) < d ( x 1 , x 2 ) d(x_1, x_2)=d(Tx_1,Tx_2)\leq \lambda d(x_1,x_2)<d(x_1,x_2) d(x1,x2)=d(Tx1,Tx2)≤λd(x1,x2)<d(x1,x2),显然矛盾,唯一性成立.
证毕.