在 △ A B C \triangle ABC △ABC 中, 内心为点 I I I, 内切圆分别切 B C BC BC, A C AC AC, A B AB AB 于点 D D D, E E E, F F F. D K ⊥ E F DK \bot EF DK⊥EF 交内切圆于 K K K, 直线 A K AK AK 交内切圆于 K K K, U U U. ( U B F ) (UBF) (UBF) 与 ( U C E ) (UCE) (UCE) 交于 U U U, V V V, U V UV UV 交 D I DI DI 于点 R R R. 求证: A R ⊥ A I AR \bot AI AR⊥AI.
证明:
设弧
B
A
C
BAC
BAC 的中点为
N
N
N, 弧
B
C
BC
BC 的中点为
S
S
S. 设射线
N
I
NI
NI 交
(
A
B
C
)
(ABC)
(ABC) 于点
P
P
P. 设
I
D
ID
ID 交
N
A
NA
NA 于点
R
′
R'
R′. 设
∠
B
A
C
\angle BAC
∠BAC 内的旁切圆为
⨀
J
a
\bigodot J_a
⨀Ja. 设
△
A
B
C
\triangle ABC
△ABC 的外心为
O
O
O.
易知以下结论:
N
N
N,
O
O
O,
S
S
S 共线且
N
S
NS
NS 垂直平分
B
C
BC
BC.
B
B
B,
I
I
I,
C
C
C,
J
a
J_a
Ja 共圆, 圆心为
S
S
S.
A
A
A,
I
I
I,
S
S
S,
J
a
J_a
Ja 共线.
N
A
⊥
A
I
NA \bot AI
NA⊥AI.
△
A
E
F
∼
△
N
B
C
\triangle AEF \sim \triangle NBC
△AEF∼△NBC,
△
K
E
F
∼
△
I
C
B
\triangle KEF \sim \triangle ICB
△KEF∼△ICB,
△
J
a
B
C
∼
△
D
E
F
\triangle J_aBC\sim \triangle DEF
△JaBC∼△DEF.
设
D
′
D'
D′ 为
B
C
BC
BC 上的旁切圆切点, 延长
I
D
ID
ID 交
(
I
B
C
)
(IBC)
(IBC) 于
J
a
′
J_a'
Ja′, 则
J
a
D
′
/
/
N
S
/
/
J
a
′
D
J_aD'//NS//J_a'D
JaD′//NS//Ja′D, 此外, 易知
D
D
D,
D
′
D'
D′ 关于
N
S
NS
NS 对称,
(
I
B
C
)
(IBC)
(IBC) 关于
N
S
NS
NS 对称, 综上可知
J
a
′
J_a'
Ja′ 与
J
a
J_a
Ja 关于
B
C
BC
BC 的中垂线对称.
延长
N
P
NP
NP 交
(
I
B
C
)
(IBC)
(IBC) 于点
X
X
X.
∠
I
X
J
a
′
=
∠
I
X
J
a
+
∠
J
a
′
X
J
a
=
π
/
2
+
∠
J
a
I
J
a
′
=
π
/
2
+
(
π
/
2
−
B
−
A
/
2
)
=
A
/
2
+
C
\angle IXJ_a'=\angle IXJ_a+\angle J_a'XJ_a=\pi/2+\angle J_aIJ_a'=\pi/2+(\pi/2-B-A/2)=A/2+C
∠IXJa′=∠IXJa+∠Ja′XJa=π/2+∠JaIJa′=π/2+(π/2−B−A/2)=A/2+C
∠
N
R
′
J
a
′
=
π
−
∠
A
R
′
I
=
C
+
A
/
2
=
∠
I
X
J
a
′
\angle NR'J_a'=\pi-\angle AR'I=C+A/2=\angle IXJ_a'
∠NR′Ja′=π−∠AR′I=C+A/2=∠IXJa′, 所以
J
a
′
J_a'
Ja′,
X
X
X,
R
′
R'
R′,
N
N
N 共圆.
∠
D
U
K
=
∠
F
U
K
+
∠
F
U
D
=
C
/
2
+
π
−
B
/
2
\angle DUK=\angle FUK+\angle FUD=C/2+\pi-B/2
∠DUK=∠FUK+∠FUD=C/2+π−B/2
∠
A
R
′
I
=
∠
A
N
O
=
B
+
A
/
2
\angle AR'I=\angle ANO=B+A/2
∠AR′I=∠ANO=B+A/2
∠
D
U
K
+
∠
A
R
′
I
=
π
\angle DUK+\angle AR'I=\pi
∠DUK+∠AR′I=π, 因此
R
′
R'
R′,
A
A
A,
U
U
U,
D
D
D 四点共圆.
由 △ A E F ∼ △ N B C \triangle AEF\sim \triangle NBC △AEF∼△NBC, △ K E F ∼ △ I C B \triangle KEF \sim \triangle ICB △KEF∼△ICB 可知: △ A E F \triangle AEF △AEF 和 ( K E F ) (KEF) (KEF) ( ⨀ I \bigodot I ⨀I) 构成的图形 ϕ 1 \phi_1 ϕ1 与 △ N B C \triangle NBC △NBC 和 ( I C B ) (ICB) (ICB) 构成的图形 ϕ 2 \phi_2 ϕ2 之间存在一个相似关系, 使得 A A A 和 N N N 对应, E E E 和 C C C 对应, F F F 和 B B B 对应, D D D 和 J a ′ J_a' Ja′ 对应, U U U 和 X X X 对应, K K K 和 I I I 对应, I I I 和 S S S 对应. 易知 △ J a ′ B C ∼ △ D F E \triangle J_a'BC \sim \triangle DFE △Ja′BC∼△DFE, 进而 D D D 和 J a ′ J_a' Ja′ 对应. (前面的点为 ϕ 1 \phi_1 ϕ1 的点, 后面的点为 ϕ 2 \phi_2 ϕ2 的点)
进而有:
△
B
X
C
∼
△
F
U
E
\triangle BXC \sim \triangle FUE
△BXC∼△FUE,
∠
J
a
′
N
X
=
∠
D
A
U
\angle J_a'NX=\angle DAU
∠Ja′NX=∠DAU.
∠
J
a
′
R
′
X
=
∠
J
a
′
N
X
=
∠
D
A
U
=
∠
D
R
′
U
\angle J_a'R'X=\angle J_a'NX=\angle DAU=\angle DR'U
∠Ja′R′X=∠Ja′NX=∠DAU=∠DR′U, 所以
R
′
R'
R′,
U
U
U,
X
X
X 共线.
设
V
′
V'
V′ 为
R
′
X
R'X
R′X 与
(
I
B
C
)
(IBC)
(IBC) 除
X
X
X 外的另一个交点,
∠
B
V
′
U
=
∠
B
C
X
=
∠
U
E
F
\angle BV'U=\angle BCX=\angle UEF
∠BV′U=∠BCX=∠UEF,
∠
C
V
′
U
=
∠
C
B
X
=
∠
U
F
E
\angle CV'U=\angle CBX=\angle UFE
∠CV′U=∠CBX=∠UFE, 由相切易知
∠
U
E
F
=
∠
B
F
U
\angle UEF=\angle BFU
∠UEF=∠BFU,
∠
U
F
E
=
∠
U
E
C
\angle UFE=\angle UEC
∠UFE=∠UEC, 进而
∠
B
V
′
U
=
∠
B
F
U
\angle BV'U=\angle BFU
∠BV′U=∠BFU,
∠
C
V
′
U
=
∠
C
E
U
\angle CV'U=\angle CEU
∠CV′U=∠CEU
因此
V
′
V'
V′ 在
(
B
F
U
)
(BFU)
(BFU),
(
C
E
U
)
(CEU)
(CEU) 上,
V
′
V'
V′ 即
V
V
V, 进而
R
′
R'
R′ 即为
R
R
R.
所以
R
R
R 在
N
A
NA
NA 上, 进而易知
R
A
⊥
A
I
RA \bot AI
RA⊥AI.
证毕.
2025年1月7日