2019年IMO第6题

△ A B C \triangle ABC ABC 中, 内心为点 I I I, 内切圆分别切 B C BC BC, A C AC AC, A B AB AB 于点 D D D, E E E, F F F. D K ⊥ E F DK \bot EF DKEF 交内切圆于 K K K, 直线 A K AK AK 交内切圆于 K K K, U U U. ( U B F ) (UBF) (UBF) ( U C E ) (UCE) (UCE) 交于 U U U, V V V, U V UV UV D I DI DI 于点 R R R. 求证: A R ⊥ A I AR \bot AI ARAI.

在这里插入图片描述

证明:
在这里插入图片描述

设弧 B A C BAC BAC 的中点为 N N N, 弧 B C BC BC 的中点为 S S S. 设射线 N I NI NI ( A B C ) (ABC) (ABC) 于点 P P P. 设 I D ID ID N A NA NA 于点 R ′ R' R. 设 ∠ B A C \angle BAC BAC 内的旁切圆为 ⨀ J a \bigodot J_a Ja. 设 △ A B C \triangle ABC ABC 的外心为 O O O.
易知以下结论: N N N, O O O, S S S 共线且 N S NS NS 垂直平分 B C BC BC. B B B, I I I, C C C, J a J_a Ja 共圆, 圆心为 S S S. A A A, I I I, S S S, J a J_a Ja 共线. N A ⊥ A I NA \bot AI NAAI. △ A E F ∼ △ N B C \triangle AEF \sim \triangle NBC AEFNBC, △ K E F ∼ △ I C B \triangle KEF \sim \triangle ICB KEFICB, △ J a B C ∼ △ D E F \triangle J_aBC\sim \triangle DEF JaBCDEF.
在这里插入图片描述
D ′ D' D B C BC BC 上的旁切圆切点, 延长 I D ID ID ( I B C ) (IBC) (IBC) J a ′ J_a' Ja, 则 J a D ′ / / N S / / J a ′ D J_aD'//NS//J_a'D JaD//NS//JaD, 此外, 易知 D D D, D ′ D' D 关于 N S NS NS 对称, ( I B C ) (IBC) (IBC) 关于 N S NS NS 对称, 综上可知 J a ′ J_a' Ja J a J_a Ja 关于 B C BC BC 的中垂线对称.
延长 N P NP NP ( I B C ) (IBC) (IBC) 于点 X X X.
∠ I X J a ′ = ∠ I X J a + ∠ J a ′ X J a = π / 2 + ∠ J a I J a ′ = π / 2 + ( π / 2 − B − A / 2 ) = A / 2 + C \angle IXJ_a'=\angle IXJ_a+\angle J_a'XJ_a=\pi/2+\angle J_aIJ_a'=\pi/2+(\pi/2-B-A/2)=A/2+C IXJa=IXJa+JaXJa=π/2+JaIJa=π/2+(π/2BA/2)=A/2+C
∠ N R ′ J a ′ = π − ∠ A R ′ I = C + A / 2 = ∠ I X J a ′ \angle NR'J_a'=\pi-\angle AR'I=C+A/2=\angle IXJ_a' NRJa=πARI=C+A/2=IXJa, 所以 J a ′ J_a' Ja, X X X, R ′ R' R, N N N 共圆.
∠ D U K = ∠ F U K + ∠ F U D = C / 2 + π − B / 2 \angle DUK=\angle FUK+\angle FUD=C/2+\pi-B/2 DUK=FUK+FUD=C/2+πB/2
∠ A R ′ I = ∠ A N O = B + A / 2 \angle AR'I=\angle ANO=B+A/2 ARI=ANO=B+A/2
∠ D U K + ∠ A R ′ I = π \angle DUK+\angle AR'I=\pi DUK+ARI=π, 因此 R ′ R' R, A A A, U U U, D D D 四点共圆.
在这里插入图片描述

△ A E F ∼ △ N B C \triangle AEF\sim \triangle NBC AEFNBC, △ K E F ∼ △ I C B \triangle KEF \sim \triangle ICB KEFICB 可知: △ A E F \triangle AEF AEF ( K E F ) (KEF) (KEF) ( ⨀ I \bigodot I I) 构成的图形 ϕ 1 \phi_1 ϕ1 △ N B C \triangle NBC NBC ( I C B ) (ICB) (ICB) 构成的图形 ϕ 2 \phi_2 ϕ2 之间存在一个相似关系, 使得 A A A N N N 对应, E E E C C C 对应, F F F B B B 对应, D D D J a ′ J_a' Ja 对应, U U U X X X 对应, K K K I I I 对应, I I I S S S 对应. 易知 △ J a ′ B C ∼ △ D F E \triangle J_a'BC \sim \triangle DFE JaBCDFE, 进而 D D D J a ′ J_a' Ja 对应. (前面的点为 ϕ 1 \phi_1 ϕ1 的点, 后面的点为 ϕ 2 \phi_2 ϕ2 的点)

在这里插入图片描述
进而有: △ B X C ∼ △ F U E \triangle BXC \sim \triangle FUE BXCFUE, ∠ J a ′ N X = ∠ D A U \angle J_a'NX=\angle DAU JaNX=DAU.
∠ J a ′ R ′ X = ∠ J a ′ N X = ∠ D A U = ∠ D R ′ U \angle J_a'R'X=\angle J_a'NX=\angle DAU=\angle DR'U JaRX=JaNX=DAU=DRU, 所以 R ′ R' R, U U U, X X X 共线.
V ′ V' V R ′ X R'X RX ( I B C ) (IBC) (IBC) X X X 外的另一个交点, ∠ B V ′ U = ∠ B C X = ∠ U E F \angle BV'U=\angle BCX=\angle UEF BVU=BCX=UEF, ∠ C V ′ U = ∠ C B X = ∠ U F E \angle CV'U=\angle CBX=\angle UFE CVU=CBX=UFE, 由相切易知 ∠ U E F = ∠ B F U \angle UEF=\angle BFU UEF=BFU, ∠ U F E = ∠ U E C \angle UFE=\angle UEC UFE=UEC, 进而 ∠ B V ′ U = ∠ B F U \angle BV'U=\angle BFU BVU=BFU, ∠ C V ′ U = ∠ C E U \angle CV'U=\angle CEU CVU=CEU
因此 V ′ V' V ( B F U ) (BFU) (BFU), ( C E U ) (CEU) (CEU) 上, V ′ V' V V V V, 进而 R ′ R' R 即为 R R R.
所以 R R R N A NA NA 上, 进而易知 R A ⊥ A I RA \bot AI RAAI.
证毕.

2025年1月7日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值