△ABC\triangle ABC△ABC 的垂心为 HHH, AHAHAH 为直径的圆交 △ABC\triangle ABC△ABC 的外接圆 ⨀O\bigodot O⨀O 于 AAA, QQQ. HQHQHQ 为为直径的圆交 ⨀O\bigodot O⨀O 于 QQQ, KKK. MMM 为 BCBCBC 边中点, FFF 为 AAA 在 BCBCBC 边的投影. 求证: (MFK)(MFK)(MFK) 切 (HQK)(HQK)(HQK) 于 KKK.
证明:
设点 AAA 的对径点为 A′A'A′. 易知 A′BHCA'BHCA′BHC 构成平行四边形. 所以 MMM, HHH, A′A'A′ 共圆.
延长 AHAHAH 交 (ABC)(ABC)(ABC) 于点 H1H_1H1, 则 ∠AA′H1=π2\angle AA'H_1=\frac{\pi}{2}∠AA′H1=2π, AH1//BCAH_1//BCAH1//BC, 易知 HF=H1FHF=H_1FHF=H1F.
延长 MHMHMH 交 ⨀O\bigodot O⨀O 于 Q′Q'Q′. 则 MH⋅HQ′=12HA′⋅HQMH \cdot HQ'= \frac{1}{2} HA' \cdot HQMH⋅HQ′=21HA′⋅HQ ‘=12HA⋅HH′=HF⋅HA\frac{1}{2} HA \cdot HH'=HF \cdot HA21HA⋅HH′=HF⋅HA. 所以 AAA, Q′Q'Q′, FFF, MMM 共圆. ∠AQ′H=π2\angle AQ'H=\frac{\pi}{2}∠AQ′H=2π, Q′Q'Q′ 即为 QQQ.
过点 KKK 作 HKHKHK 的垂线, 设其与直线 BCBCBC 的交点为 XXX.
∠H1KX=∠QAH1=∠H1MX\angle H_1KX=\angle QAH_1=\angle H_1MX∠H1KX=∠QAH1=∠H1MX, 所以 MMM, H1H_1H1, XXX, KKK 四点共圆.
设 QQQ 在高 AFAFAF 上的投影为 DDD. 只需证明 FH⋅FD/FK2=MH⋅MQ/MK2FH \cdot FD/FK^2=MH \cdot MQ/MK^2FH⋅FD/FK2=MH⋅MQ/MK2.
FH/MH=sin∠HMFFH/MH=\sin \angle HMFFH/MH=sin∠HMF.
设 FK/MK=2r1cos∠HXF2r2cos∠HXM=r1r2=2r1sin∠HXF2r2sin∠HXM=HF/MH=sin∠HMFFK/MK=\frac{2r_1\cos \angle HXF}{2r_2\cos \angle HXM}=\frac{r_1}{r_2}=\frac{2r_1 \sin \angle HXF}{2r_2 \sin \angle HXM}=HF/MH=\sin \angle HMFFK/MK=2r2cos∠HXM2r1cos∠HXF=r2r1=2r2sin∠HXM2r1sin∠HXF=HF/MH=sin∠HMF.
其中, r1r_1r1, r2r_2r2 分别为 (KXF)(KXF)(KXF), (KXM)(KXM)(KXM) 的半径. 所以 FH/MH=FK/MKFH/MH=FK/MKFH/MH=FK/MK, FH/FK=MH/MKFH/FK=MH/MKFH/FK=MH/MK.
所以只需证 FD/FK=MQ/MKFD/FK=MQ/MKFD/FK=MQ/MK, 等价于 FD/MQ=FK/MKFD/MQ=FK/MKFD/MQ=FK/MK, 易知 HQ/AH=KF/MK=sin∠HAQHQ/AH=KF/MK=\sin \angle HAQHQ/AH=KF/MK=sin∠HAQ. 所以其成立.
证毕.