2015年IMO第3题

△ABC\triangle ABCABC 的垂心为 HHH, AHAHAH 为直径的圆交 △ABC\triangle ABCABC 的外接圆 ⨀O\bigodot OOAAA, QQQ. HQHQHQ 为为直径的圆交 ⨀O\bigodot OOQQQ, KKK. MMMBCBCBC 边中点, FFFAAABCBCBC 边的投影. 求证: (MFK)(MFK)(MFK)(HQK)(HQK)(HQK)KKK.

在这里插入图片描述

证明:

在这里插入图片描述
设点 AAA 的对径点为 A′A'A. 易知 A′BHCA'BHCABHC 构成平行四边形. 所以 MMM, HHH, A′A'A 共圆.
延长 AHAHAH(ABC)(ABC)(ABC) 于点 H1H_1H1, 则 ∠AA′H1=π2\angle AA'H_1=\frac{\pi}{2}AAH1=2π, AH1//BCAH_1//BCAH1//BC, 易知 HF=H1FHF=H_1FHF=H1F.

延长 MHMHMH⨀O\bigodot OOQ′Q'Q. 则 MH⋅HQ′=12HA′⋅HQMH \cdot HQ'= \frac{1}{2} HA' \cdot HQMHHQ=21HAHQ ‘=12HA⋅HH′=HF⋅HA\frac{1}{2} HA \cdot HH'=HF \cdot HA21HAHH=HFHA. 所以 AAA, Q′Q'Q, FFF, MMM 共圆. ∠AQ′H=π2\angle AQ'H=\frac{\pi}{2}AQH=2π, Q′Q'Q 即为 QQQ.

在这里插入图片描述

过点 KKKHKHKHK 的垂线, 设其与直线 BCBCBC 的交点为 XXX.

∠H1KX=∠QAH1=∠H1MX\angle H_1KX=\angle QAH_1=\angle H_1MXH1KX=QAH1=H1MX, 所以 MMM, H1H_1H1, XXX, KKK 四点共圆.

在这里插入图片描述

QQQ 在高 AFAFAF 上的投影为 DDD. 只需证明 FH⋅FD/FK2=MH⋅MQ/MK2FH \cdot FD/FK^2=MH \cdot MQ/MK^2FHFD/FK2=MHMQ/MK2.

FH/MH=sin⁡∠HMFFH/MH=\sin \angle HMFFH/MH=sinHMF.

FK/MK=2r1cos⁡∠HXF2r2cos⁡∠HXM=r1r2=2r1sin⁡∠HXF2r2sin⁡∠HXM=HF/MH=sin⁡∠HMFFK/MK=\frac{2r_1\cos \angle HXF}{2r_2\cos \angle HXM}=\frac{r_1}{r_2}=\frac{2r_1 \sin \angle HXF}{2r_2 \sin \angle HXM}=HF/MH=\sin \angle HMFFK/MK=2r2cosHXM2r1cosHXF=r2r1=2r2sinHXM2r1sinHXF=HF/MH=sinHMF.

其中, r1r_1r1, r2r_2r2 分别为 (KXF)(KXF)(KXF), (KXM)(KXM)(KXM) 的半径. 所以 FH/MH=FK/MKFH/MH=FK/MKFH/MH=FK/MK, FH/FK=MH/MKFH/FK=MH/MKFH/FK=MH/MK.

所以只需证 FD/FK=MQ/MKFD/FK=MQ/MKFD/FK=MQ/MK, 等价于 FD/MQ=FK/MKFD/MQ=FK/MKFD/MQ=FK/MK, 易知 HQ/AH=KF/MK=sin⁡∠HAQHQ/AH=KF/MK=\sin \angle HAQHQ/AH=KF/MK=sinHAQ. 所以其成立.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值