爱因斯坦求和约定
爱因斯坦求和约定(Einstein summation convention)是一种标记的约定, 又称为爱因斯坦标记法(Einstein notation), 可以让表达式更加简洁明了. 里面主要涉及两个概念: 哑指标(dummy index), 自由指标(free index)
定义
哑指标: 在表达式的某项中, 若某指标重复出现两次, 则表示要把该项指标在取值范围内遍历求和. 该重复指标称为哑指标或简称哑标. (未被求和的指标称为自由指标)
自由指标: 在表达式的某项中, 若某指标只出现一次, 若在取值范围内轮流取该指标的任一值时, 关系式恒成立. 该指标称为自由指标.
举例说明
- 设 a , b \bf a,b a,b 为两个矢量, 其分量分别记为 a i , b i ( i = 1 , 2 , 3 ) a_i,b_i(i=1,2,3) ai,bi(i=1,2,3), 则
a ⋅ b = a 1 b 1 + a 2 b 2 + a 3 b 3 = ∑ i = 1 3 a i b i = a i b i \textbf{a}\cdot \textbf{b} = a_1b_1 + a_2b_2 + a_3b_3 = \sum\limits_{i=1}^3 a_ib_i = a_ib_i a⋅b=a1b1+a2b2+a3b3=i=1∑3aibi=aibi
- 由于哑指标只是表明求和, 所以它使用什么符号是无关重要的. 于是, 上式中 a i b i a_ib_i aibi 可以用 a j b j a_jb_j ajbj 代替.
a i b i = a j b j = a k b k a_ib_i = a_jb_j = a_kb_k aibi=ajbj=akbk
- 对于如下一个线性变换的例子
x 1 ′ = a 11 x 1 + a 12 x 2 + a 13 x 3 x 2 ′ = a 21 x 1 + a 22 x 2 + a 23 x 3 x 3 ′ = a 31 x 1 + a 32 x 2 + a 33 x 3 x'_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3\\ x'_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3\\ x'_3 = a_{31}x_1 + a_{32}x_2 + a_{33}x_3 x1′=a11x1+a12x2+a13x3x2′=a21x1+a22x2+a23x3x3′=a31x1+a32x2+a33x3
用爱因斯坦求和表示为
x
i
′
=
a
i
j
x
j
x'_i = a_{ij}x_j
xi′=aijxj
其中,
i
i
i 为自由指标,
j
j
j 为哑指标.
补充说明
- 自由指标换标时必须整个表达式换标
- 同项中出现两对(或多对)不同哑标表示多重求和. 如: a i j x i x j = ∑ i = 1 3 ∑ j = 1 3 a i j x i x j a_{ij}x_ix_j = \sum\limits_{i=1}^3\sum\limits_{j=1}^3a_{ij}x_ix_j aijxixj=i=1∑3j=1∑3aijxixj
- 哑标只能成对出现, 否则要加上求和号或特别指出. 如: ∑ i = 1 3 a i b i c i \sum\limits_{i=1}^3a_ib_ic_i i=1∑3aibici 不能写成 a i b i c i a_ib_ic_i aibici
- 由 a i b i = a i c i a_ib_i = a_ic_i aibi=aici 不能得出 b i = c i b_i=c_i bi=ci
- 若重复出现的标号不求和, 应特别声明
- 通常情况下, 默认英文字母标号 i , j , k ⋯ i,j,k\cdots i,j,k⋯ 取值范围是 1 , 2 , 3 1,2,3 1,2,3, 拉丁文字母标号 α , β , γ ⋯ \alpha,\beta,\gamma\cdots α,β,γ⋯ 取值范围是 1 , 2 1,2 1,2