非线性偏微分方程行波解机械化求解方法:Extended tanh-function method

Extended tanh-function方法,由Engui Fan在2000年提出,是一种用于非线性偏微分方程(PDE)行波解的解析方法。该方法基于Tanh-function方法和Riccati方程,简化了获取PDE精确行波解的过程。E.J. Parkes的Tanh-function方法是其前身,常用于求解孤子解。Fan的方法还处理了m非正整数情况。文中以KdV–Burgers–Kuramoto方程为例,展示了Mathematica的求解步骤和代码。
摘要由CSDN通过智能技术生成

  2000年,Engui FanPhysics Letters A上发表论文Extended tanh-function method and its applications to nonlinear equations,提出了一种求解非线性偏微分方程(PDE)行波解的有效解析方法,至今WOS引用近1300次。
  这种解析方法基于Tanh-function方法,充分利用Riccati方程的优点,简单巧妙地实现了一类PDE精确行波解的获得。
  为求解非线性演化方程的孤子解,E.J. Parkes发表在1996年Computer Physics Communications的文章中提出了Tanh-function方法,并形成了Mathematica的ATFM工具包。这种Tanh-function方法假设关于空间和时间的PDE

H ( u , u t , u x , u x x , … ) = 0 H(u,u_t,u_x,u_{xx},\ldots) = 0 H(u,ut,ux,uxx,)=0

  其行波解可以表达为 tanh ⁡ \tanh tanh函数的多项式,即
u ( x , t ) = U ( z ) = ∑ i = 0 m a i w i u(x,t)=U(z)=\sum_{i=0}^m a_iw^i u(x,t)=U(z)=i=0maiwi
  其中,正整数 m m m是平衡最高阶线性项和非线性项的系数。
w ( x , t ) = tanh ⁡ ( k z ) , z = x + c t w(x,t)=\tanh(kz),z=x+ct w(x,t)=tanh(kz),z=x+ct
  基于这种假设,将 U ( z ) U(z)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值