一维无界的自由波动问题-达朗贝尔行波解

目录

第一个例子

混合边界条件的例子

自然边界条件

一维无界的自由波动问题


第一个例子

\small \mu(x,t)表示热能的扩散,在空间有不同的取值,随空间和时间而变化,左端是跟一个恒温为0的热源接触,我们表示为\small \mu(0,t)=0,这个叫恒温条件。右端我们跟一个绝热的材料接触,傅里叶发现了热传导规律\small q=\frac{dQ}{dt}=-KS\frac{\partial \mu}{\partial x},K叫做热传导系数,q叫做热流强度,绝热就是热流为0,我们可以表示为\small KS(\frac{\partial \mu}{\partial x})|_{x=l}=0右端绝热,绝热和波动问题中的自由端是相似的(一阶导数等于0),这个称为绝热条件,属于第二类非齐次边界条件

混合边界条件的例子

我们再举一个例子:

热扩散问题他的右端表面和环境的温度差\small (\mu-\mu_0),如果右端自然冷却(满足牛顿的冷却定律,温度差决定了热扩散的强度)从左端来看,\small \frac{dQ}{dt}=-KS(\frac{\partial \mu}{\partial x})|_{x=L}=-h(\mu-\mu_0)|_{x=L},热流强度和温度差成正比。我们可以得到\small \mu+(\frac{KS}{h})\mu_x| _{x=L} =\mu_0,即\small (\mu+c\mu_x)| _{x=L} =\mu_0,这个就是第三类非齐次边界条件

所以在不同的物理问题里面可以抽象出不同的初始条件和边界条件


自然边界条件

其他的边界条件可以称之为自然边界条件

衔接问题:衔接条件 ,电磁场在两种介质都满足相似的波动方程,但是边界上有一个衔接条件\small D_{1n}=D_{2n},\phi_1=\phi_2\small E_{1t}=E_{2t},B_{1n}=B_{2n},H_{1t}=H_{2t}

周期性条件:\small \mu(\rho,\phi,z)=\mu(\rho,\phi +2\pi,z)

特别把下面这种情况称为自然边界条件,这个场如果描述的是一个有能量的场,场在无穷远处应该趋于0,否则能量就会使无穷大,所以自然边界条件的意思是,在球坐标系或者距离趋于无穷,\small \mu|_{r->\infty}=有限值,例如\small R(r)=C_1r^l=d_lr^{-(l+1)}因为需要有有界,就可以确定\small C_1=0,趋于0的时候场也必须有限\small d_1=0,研究球外取前者的近似,球内取后者的近似


一维无界的自由波动问题

两端无界,振动向两边传播,,自由就是没有外加的强迫力,如果反射波还没有来得及传播到我研究的范围,所以可以看作是无界的解

我们首先列出齐次波动方程\small \mu_{tt}-a^2\mu_{xx}=0(f(x,t)=0)自由

只有初始条件,没有边界条件,这是一个哥西问题,但它的解称为达朗贝尔解,也叫做达朗贝尔行波解,因为描述的是传播中的波(和它相对应的是驻波),初始条件:\small \mu(x,0)=\phi(x),需要两个初始条件 \small \mu_t(x,0)=\psi(x),(-\infty <x <\infty),这个泛定方程,有一个达朗贝尔算符\small (\frac{\partial^2 }{\partial t^2}-a^2\frac{\partial^2 }{\partial x^2})\mu(x,t)=0,我们可以把这个算符在形式上分解为两个算符的乘积(这是一个广义的乘积,不是简单的平方,表示相应的作用),写成\small (\frac{\partial }{\partial t}+a\frac{\partial }{\partial x})(\frac{\partial }{\partial t}-a\frac{\partial }{\partial x})\mu(x,t)=0

就像二阶偏导数作用在\small \mu上,可以看成两次的叠加,看作\small \frac{\partial }{\partial x}\frac{\partial }{\partial x} \mu=\frac{\partial^2 }{\partial x^2}\mu我们把波动方程分解成这样的形式,有什么好处?

也就是我们想要做一个变量代换,变成另一个函数,想找到\small (x,t)->(\zeta,\eta),使得\small \frac{\partial^2 \mu}{\partial \zeta \partial \eta}=0

我们需要做一个线性变换,\small x=c_{11}\zeta+c_{12}\eta,t=c_{21}\zeta+c_{22}\eta,数学家已经证明,只需要一个线性变换,我们只需要确定这四个系数

\small \frac{\partial^2 \mu}{\partial \zeta \partial \eta}=0这个方程很好积分,我们首先对\small \eta积分\small \frac{\partial u}{\partial \eta}=c(\zeta)积分完以后一定是另一个变量的函数,

然后我们再对\small \zeta进行积分,就可以得到\small \mu(\zeta,\eta)=f_1(\zeta)+f_2(\eta),两个单纯的函数之和,就是这个方程的解

 我们下面只需要找到线性变换的四个系数,假如我们的偏微分方程,\small \mu_{tt}+a\mu_{tx}+b\mu_{xx}=0,这样的齐次二阶偏微分方程,线性的,怎么求解?也可以用类似的方法,我们只需要找到\small x=c_{11}\zeta+c_{12}\eta,t=c_{21}\zeta+c_{22}\eta,找到这样一个线性变换,把三项,变成只有交叉项的二阶偏微分方程,这样解就非常简单了\small \frac{\partial^2 \mu}{\partial \zeta \partial \eta}=0,加入我们找到线性变换,反过来我们就可知道\small \zeta=d_{11}x+d_{12}y,\eta=d_{21}x+d_{22}y,然后我们就可以代入最后方程的解,我们就可以知道\small \mu(x,y)=

所以我们不仅仅是学一个波动方程的解,而是掌握一大类二阶齐次微分方程的通解,这样的二阶偏微分方程我们就可以解决

形式上我们看成\small (x^2+axy+by^2=0)\mu=(x-c_1y)(x-c_2y)\mu=0,所以方程就简化为

\small (\frac{\partial }{\partial t}-c_1\frac{\partial }{\partial x})(\frac{\partial }{\partial t}-c_2\frac{\partial }{\partial x})\mu(x,t)=0,达朗贝尔算符就是一个双曲型的算符

我们用变量代换的方法,把双曲型的波动方程,改写成这样一个只有交叉项,二次的偏导数方程,最重要的是要掌握,在变量代换的情况下,有一种链式法则,我们要把\small \frac{\partial }{\partial t}+a\frac{\partial }{\partial x}变成\small \frac{\partial }{\partial \zeta},把\small \frac{\partial }{\partial t}-a\frac{\partial }{\partial x}变成\small \frac{\partial }{\partial \eta},我们希望\small \frac{\partial }{\partial \zeta}=\frac{\partial }{\partial t}\frac{\partial t}{\partial \zeta}+\frac{\partial }{\partial t}\frac{\partial t}{\partial \eta}=\frac{\partial }{\partial t}+a\frac{\partial }{\partial x},\small \frac{\partial }{\partial \eta}=\frac{\partial }{\partial t}\frac{\partial t}{\partial \eta}+\frac{\partial }{\partial t}\frac{\partial t}{\partial \eta}=\frac{\partial }{\partial t}-a\frac{\partial }{\partial x}

这些链式法则需要记住,要求\small \frac{\partial t}{\partial \zeta}=1,\frac{\partial x}{\partial \zeta}=a,\frac{\partial t}{\partial \eta}=1,\frac{\partial x}{\partial \eta}=-a,

所以我们得到\small c_{11}=a,c_{12}=-a,c_{21}=1,c_{22}=1

四个系数就求出来了,我们得到\small x=a(\zeta-\eta),y=\zeta+\eta

反过来我们可以求出\small \zeta=\frac{1}{2}(t+\frac{x}{a})=\frac{1}{2a}(x+at),\eta=\frac{1}{2}(t-\frac{x}{a})=\frac{1}{2a}(at-x),我们再把解给代入进来,我们就可以得到最后的解

\small \mu=f_1[\frac{1}{2a}(x+at)]+f_2(-\frac{1}{2a}(x-at))=F_1(x+at)+F_2(x-at)\small F_1,F_2需要两个初始条件来确定这两个系数

我们再来确定这两个系数的值

\small \mu(x,t)=F_1(x+at)+F_2(x-at),令\small t=0\small \mu(x,0)=F_1(x)+F_2(x)=\phi(x).......1

两边对t求导

再令\small t=0\small \mu_t(x,0)=aF_1^{`}(x)-aF_x^{`}(x)=\psi(x)......2

解这两个联立的方程求出\small F_1(x)=?,F_2(x)=?

从第二个式子,我们得到\small F_1(x)-F_2(x)=\frac{1}{a}\int_{x_0}^{x} \psi(\alpha) d\alpha+c......3

再把1,3联立起来,我们就可以求出

\small F_1(x)=\frac{1}{2}\phi(x)+\frac{1}{2}\int_{x_0}^{x} \psi(\alpha) d\alpha+\frac{c}{2}

\small F_2(x)=\frac{1}{2}\phi(x)-\frac{1}{2}\int_{x_0}^{x} \psi(\alpha) d\alpha-\frac{c}{2}

然后我们要求的解是\small \mu(x,t)=F_1(x+at)+F_2(x-at)

\small \mu(x,t)=\frac{1}{2}[\phi(x+at)+\phi(x-at)]+\frac{1}{2a}\int_{x-at}^{x+at} \psi(\alpha) d\alpha

这就是所谓的达朗贝尔解,也称为达朗贝尔行波解

初始的振动位移贡献是 \small \frac{1}{2}[\phi(x+at)+\phi(x-at)],表示沿着x正方向的一个行波和沿着x反方向的一个行波

初始的振动速度积分以后变成了位移变成了\small \Phi(x),两个相减,还是表示一个沿着x正方向的波和反方向的波,所有行波的速度是一定的,如果是纵波\small a=\sqrt{\frac{Y}{\rho}}可以代表不同频率的行波叠加,但每种不同频率的行波波速一样,在同一个媒质中,所以a是一定的,频率是不同的

我们学完傅里叶变换以后,我们可以变成不同频率的行波的叠加,如果是周期函数,就可以做傅里叶函数展开,非周期函数可以作傅里叶积分变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值