波动方程的行波解(二)| 半直线上的问题——延拓法 | 偏微分方程(十)

半直线上的弦振动问题,有时可以先将初始条件延拓至整根直线,再用达朗贝尔公式求解。

例1:一段固定半无界弦的自由振动
{ ∂ 2 u ∂ t 2 = a 2 ∂ 2 u ∂ x 2 t > 0 , x > 0 u ( t , 0 ) = 0 u ( 0 , x ) = φ ( x ) , u t ( 0 , x ) = ψ ( x ) (1) \begin{cases} \frac{\partial^2u}{\partial t^2}=a^2\frac{\partial^2u}{\partial x^2} \quad t>0,x>0 \\ u(t,0)=0 \\ u(0,x)=\varphi(x), \quad u_t(0,x)=\psi(x) \end{cases} \tag{1} t22u=a2x22ut>0,x>0u(t,0)=0u(0,x)=φ(x),ut(0,x)=ψ(x)(1)
分析:这里的初始条件 φ ( x ) , ψ ( x ) \varphi(x),\psi(x) φ(x),ψ(x)仅在 x > 0 x>0 x>0有定义,故不能直接应用达朗贝尔公式。但由达朗贝尔公式可知,如果定义在整个实轴上的 φ ( x ) , ψ ( x ) \varphi(x),\psi(x) φ(x),ψ(x)奇函数,则
u ( t , 0 ) = 1 2 [ φ ( − a t ) + φ ( a t ) ] + 1 2 a ∫ − a t a t ψ ( ξ ) d ξ = 0 u(t,0)=\frac{1}{2}[\varphi(-at)+\varphi(at)]+\frac{1}{2a}\int_{-at}^{at}\psi(\xi)d\xi=0 u(t,0)=21[φ(at)+φ(at)]+2a1atatψ(ξ)dξ=0
如果 φ ( x ) , ψ ( x ) \varphi(x),\psi(x) φ(x),ψ(x)偶函数,则
∂ u ∂ x ( t , 0 ) = 1 2 [ φ ′ ( − a t ) + φ ′ ( a t ) ] + 1 2 a [ ψ ( a t ) − ψ ( − a t ) ] = 0 \frac{\partial u}{\partial x}(t,0)=\frac{1}{2}[\varphi'(-at)+\varphi'(at)]+\frac{1}{2a}[\psi(at)-\psi(-at)]=0 xu(t,0)=21[φ(at)+φ(at)]+2a1[ψ(at)ψ(at)]=0
因此,可用延拓法将(1)式中的 φ ( x ) , ψ ( x ) \varphi(x),\psi(x) φ(x),ψ(x) x > 0 x>0 x>0奇延拓到 x < 0 x<0 x<0,再利用达朗贝尔公式,求出的解满足边界条件 u ( t , 0 ) = 0 u(t,0)=0 u(t,0)=0

:作辅助函数
Φ ( x ) = { φ ( x ) , x ≥ 0 , − φ ( − x ) , x < 0 \Phi(x)= \begin{cases} \varphi(x), & x\geq 0, \\ -\varphi(-x), & x<0 \end{cases} Φ(x)={φ(x),φ(x),x0,x<0

Ψ ( x ) = { ψ ( x ) , x ≥ 0 − ψ ( − x ) , x < 0 \Psi(x)= \begin{cases} \psi(x), & x\geq 0 \\ -\psi(-x), & x<0 \end{cases} Ψ(x)={ψ(x),ψ(x),x0x<0

由达朗贝尔公式得(1)式的解
u ( t , x ) = 1 2 [ Φ ( x + a t ) + Φ ( x − a t ) ] + 1 2 a ∫ x − a t x + a t Ψ ( ξ d ξ ) { 1 2 [ φ ( x + a t ) + φ ( x − a t ) ] + 1 2 a ∫ x − a t x + a t ψ ( ξ ) d ξ , t ≤ x a 1 2 [ φ ( x + a t ) + φ ( a t − x ) ] + 1 2 a ∫ a t − x x + a t ψ ( ξ ) d ξ , t > x a u(t,x)=\frac{1}{2}[\Phi(x+at)+\Phi(x-at)]+\frac{1}{2a}\int_{x-at}^{x+at}\Psi(\xi d\xi) \\ \begin{cases} \frac{1}{2}[\varphi(x+at)+\varphi(x-at)]+\frac{1}{2a}\int_{x-at}^{x+at}\psi(\xi)d\xi, & t\leq \frac{x}{a} \\ \frac{1}{2}[\varphi(x+at)+\varphi(at-x)]+\frac{1}{2a}\int_{at-x}^{x+at}\psi(\xi)d\xi, & t> \frac{x}{a} \end{cases} u(t,x)=21[Φ(x+at)+Φ(xat)]+2a1xatx+atΨ(ξdξ){21[φ(x+at)+φ(xat)]+2a1xatx+atψ(ξ)dξ,21[φ(x+at)+φ(atx)]+2a1atxx+atψ(ξ)dξ,taxt>ax
为理解此解的物理意义,不妨设初速度 ψ ( ξ ) = 0 \psi(\xi)=0 ψ(ξ)=0。当 t ≤ π a t\leq \frac{\pi}{a} taπ时,端点的影响尚未传到x点,x点的运动仍由初位移引起的左右行波 1 2 [ φ ( x + a t ) + φ ( x − a t ) ] \frac{1}{2}[\varphi(x+at)+\varphi(x-at)] 21[φ(x+at)+φ(xat)]决定。当 t ≥ x a t\geq \frac{x}{a} tax,端点的影响已传到x点,x点运动由左行波(入射波) 1 2 φ ( x + a t ) \frac{1}{2}\varphi(x+at) 21φ(x+at)和右行波(反射波) − 1 2 φ ( a t − x ) -\frac{1}{2}\varphi(at-x) 21φ(atx)决定。在端点 x = 0 x=0 x=0处,入射波与反射波分别为 1 2 φ ( a t ) \frac{1}{2}\varphi(at) 21φ(at) − 1 2 φ ( a t ) -\frac{1}{2}\varphi(at) 21φ(at),故 u ( t , 0 ) ≡ 0 u(t,0)\equiv 0 u(t,0)0

类似地,也可通过将 φ ( x ) , ψ ( x ) \varphi(x),\psi(x) φ(x),ψ(x)作偶延拓求解端点自由的半无界弦的自由振动。

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值