在[0,4π]区间,根据
y
(
t
,
x
)
=
e
−
0.2
x
s
i
n
(
π
t
24
−
x
)
y(t,x)=e^{-0.2x}sin(\frac{πt}{24}-x)
y(t,x)=e−0.2xsin(24πt−x)表现“行波”
matlab程序:
t=pi*(0:0.01:20);%时间控制
l=length(t);%获取时间数组长度
x=pi*(0:0.01:4);%[0,4π]区间
y=exp(-0.2*x).*sin(pi/24*t(1)-x);%0时刻的轨迹曲线
h=line('xdata',x,'ydata',y,'color',[1,0,0]);%定义轨迹曲线图柄
hh=line('xdata',x(1),'ydata',y(1),'color',[1,0,0],'marker','p', ...
'markersize',10,'erasemode','background');
%定义活动对象,颜色、点形、大小和擦除方式
text(6.7,-0.65,'倒计数');%倒计数文字标注
htext=text(6.85,-0.75,int2str(l));%倒计数数字
for k=2:l
y=exp(-0.2*x).*sin(pi/24*t(k)-x);%随时间变化的轨迹曲线
set(h,'xdata',x,'ydata',y)%轨迹曲线刷新
set(hh,'xdata',x(1),'ydata',y(1))%活动对象位置刷新
ylim([-1,1])%限定y坐标以防止抖动
axis off%坐标轴关闭
set(htext,'string',int2str(l-k))%倒计数数字更新
pause(0.0005)%速度控制
end