最近在 运营课程中学习了RFM模型,又正正好在 商务智能的课程中学习了使用K-Means聚类分析实现RFM的操作。 知乎了一番后,写一下自己的学习收获(咱先起到总结作用哈)!有什么问题或者建议欢迎大家一起学习交流鸭~
主要参考:中国矿业大学电子商务专业:电子商务运营、商务智能与数据挖掘课程;知乎:猴子
RFM模型原理介绍
为什么要使用RFM模型
假设你开了一家卖早餐的小店铺。有一个月你在做财务的时候,突然发现该月收入大幅度的下降。经过分析你发现,重要的部分用户被竞争对手给挖走了。(市场经验:公司收入的80%来自顶端的20%的用户)但当你在此时采取措施的时候,已经太晚了。
从上面的小栗子我们可以看出,对于流失用户的预测和了解用户行为,对不同类型的用户采取用户细分(user segmentation)是多么的重要!那么今天我们一起来学习一下【用户细分】的简单方法之一——RFM分析方法(模型)
RMF模型原理介绍
RFM是由三个英文单词的首字母组成的,即Recency(最近一次消费时间间隔)、Frequency(一段时间内的消费频率)和Monetary(一段时间内的消费金额)(RFM分析模型介绍)
(1) 最近一次消费时间间隔(R),上一次消费离得越近,R值越小,用户价值越高。
(2) 消费频率(F),购买的频率越高,F值越大,用户价值越高
(3) 消费金额(M),消费金额越高,M值越大,用户价值越高。
每一个指标都有高-低两个值,222之后,我们得到了以下八类用户。
矩阵大家看着有点头疼,那我们来看看表格的!通俗易懂。