矩阵取数问题

一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值。
例如:3 * 3的方格。

1 3 3
2 1 3
2 2 1

能够获得的最大价值为:11。
Input
第1行:N,N为矩阵的大小。(2 <= N <= 500)
第2 - N + 1行:每行N个数,中间用空格隔开,对应格子中奖励的价值。(1 <= N[i] <= 10000)
Output
输出能够获得的最大价值。
Input示例
3
1 3 3
2 1 3
2 2 1
Output示例
11
 
  
 
  
简单的一级算法的动态规划题
 
  
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

int a[505][505];
int dp[505][505];
int main()
{
	int N;
	cin>>N;
	for(int i=1;i<=N;i++)
	    for(int j=1;j<=N;j++)
		   cin>>a[i][j];
    for(int i=0;i<N;i++)  
       dp[i][0]=0;
	for(int i=0;i<N;i++)  
	   dp[0][i]=0;  
	for(int i=1;i<=N;i++)                  
	   for(int j=1;j<=N;j++)
	   {
	   	    dp[i][j]=max(dp[i][j-1],dp[i-1][j])+a[i][j];//动态转移方程 
		}
		cout<<dp[N][N]<<endl;
		return 0;
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值