一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值。
例如:3 * 3的方格。
1 3 3
2 1 3
2 2 1
能够获得的最大价值为:11。
Input
第1行:N,N为矩阵的大小。(2 <= N <= 500) 第2 - N + 1行:每行N个数,中间用空格隔开,对应格子中奖励的价值。(1 <= N[i] <= 10000)
Output
输出能够获得的最大价值。
Input示例
3 1 3 3 2 1 3 2 2 1
Output示例
11
简单的一级算法的动态规划题
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int a[505][505]; int dp[505][505]; int main() { int N; cin>>N; for(int i=1;i<=N;i++) for(int j=1;j<=N;j++) cin>>a[i][j]; for(int i=0;i<N;i++) dp[i][0]=0; for(int i=0;i<N;i++) dp[0][i]=0; for(int i=1;i<=N;i++) for(int j=1;j<=N;j++) { dp[i][j]=max(dp[i][j-1],dp[i-1][j])+a[i][j];//动态转移方程 } cout<<dp[N][N]<<endl; return 0; }