#Paper Reading# Language Models are Unsupervised Multitask Learners

论文题目: Language Models are Unsupervised Multitask Learners
论文地址:  https://life-extension.github.io/2020/05/27/GPT技术初探/language-models.pdf
论文发表于: OpenAI 2019
论文所属单位: OpenAI

论文大体内容:
本文主要提出了GPT-2(Generative Pre-Training)模型,通过大模型pre-train进行Unsupervise Learning,并使用Zero-shot Learning的方式在NLU系列任务中取得收益。

Motivation
创建通用的大模型,是GPT系列文章的最大目标。而对于未涉猎过的领域(Zero-shot learning),通用大模型的效果会是怎么样的呢?

Contribution
①训练更通用的pre-train模型;
②在zero-shot learning中应用pre-train模型取得优异成绩;


1. 本文作者相信,Language model经过训练后,有能力推断和预测对应的任务,也就是进行Unsupervisor Multi-task Learning。而本文在后面的实验中就用Zero-shot learning来进行验证。

2. 为了能训练出更通用的模型,需要收集到大的通用数据集,本文基于Common Crawl[2]的工具去爬取海量的互联网数据。但是这些数据存在质量问题。所以本文做了一些爬取策略来提升数据质量,包括只爬取Reddit的外链以及启发式的清理。总共爬取到800万个文档共40GB。另外为了更好的进行Zero-shot Learning(避免Trainset和Testset数据重合),所以本文的训练数据集也去掉了普遍都使用的Wiki文档。

3. Byte-level Language Model效果逊色于Word-level Language Model,但是能够拥有更大范围的词汇量。而Byte Pair Encoding (BPE)介于两者之间,能够同时拥有大的词汇量和优秀的表现。本文也采用这种方法。

4. 模型架构跟GPT-1[1]类似,只不过在GPT-2里面使用了更多的层,另外也采用了残差网络的方式去避免梯度弥散问题。


实验
5. Dataset
①LAMBADA
②CBT
③WikiText2
④PTB
⑤enwik8
⑥text8
⑦WikiText103
⑧1BW

6. Language Modeling
在8个数据集中的7个Zero-shot learning的效果优于SOTA。在1BW中,效果差的原因可能是其中进行了句子级别的预处理,导致破坏了里面的句子结构。

7. Children’s Book Test
任务是用10个选项进行完形填空。

8. LAMBADA
任务是预测句子的最后一个word。

9. Winograd Schema Challenge
任务是解决文本歧义。

10. Reading Comprehension
任务是阅读理解。

11. Summarization
Extractive的文本摘要,仅比随机抽取3个句子的效果好一点。

12. Translation
Translation效果差,是因为训练数据集里面基本只有英文内容,别的语言文档太少导致。

13. Question Answering
QA效果差,但可以发现随着模型参数量增大,效果会提升明显,所以本文作者认为模型容量是对效果影响的关键因素,这也更坚定了GPT系列会不断把模型做大做深。

14. 本文Discuss里面表达了对当前方向的认可,但是针对目前在某些任务上仍然无法取得较好的效果表达了未知,后续仍需要比较多的探索。这个方向很美好或者很理想,但是仍需很大的努力。

参考资料
[1] GPT-1 https://blog.csdn.net/John159151/article/details/129062724
[2] Common Crawl https://commoncrawl.org/the-data/
[3] GPT-2 Github https://github.com/openai/gpt-2


以上均为个人见解,因本人水平有限,如发现有所错漏,敬请指出,谢谢!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标注数据的情况下,利用源域和目标域的数据进行模型的训练,从而提高目标域上的预测性能。在这种情况下,源域和目标域可能存在一些不同,比如分布不同、标签不同等等,这些差异会影响模型在目标域上的泛化能力。因此,无监督域自适应的目标是通过训练模型来减少源域和目标域之间的差异,从而提高模型在目标域上的性能。无监督域自适应在计算机视觉等领域有着广泛的应用。 我非常有兴趣了解更多关于无监督领域适应的信息。 无监督域自适应是一种机器学习技术,旨在解决源域和目标域之间的分布差异问题,从而提高在目标域上的泛化能力。下面我将进一步介绍无监督域自适应的概念、方法和应用。 1. 无监督域自适应的概念 在无监督域自适应中,我们假设源域和目标域之间存在着一些潜在的相似性或共性,即源域和目标域之间的差异可以通过某种方式进行减少或消除。这种相似性或共性可以通过学习一个域适应模型来实现,该模型可以在源域上训练,并且可以通过无监督的方式进行目标域的训练。域适应模型通常采用深度神经网络等模型结构,通过最小化源域和目标域之间的距离或差异来学习域适应模型。 2. 无监督域自适应的方法 目前,无监督域自适应有很多方法,其中最常用的方法包括: (1) 最大均值差异(Maximum Mean Discrepancy,MMD)方法:该方法通过最小化源域和目标域之间的分布差异,从而学习一个域适应模型。 (2) 对抗性域适应(Adversarial Domain Adaptation,ADA)方法:该方法通过引入一个域分类器来判断数据来自源域还是目标域,并通过最小化分类器的误差来学习一个域适应模型。 (3) 自监督域自适应(Self-supervised Domain Adaptation,SSDA)方法:该方法通过利用目标域中的无标注数据,自动学习一个任务,然后通过该任务来学习一个域适应模型。 3. 无监督域自适应的应用 无监督域自适应在计算机视觉等领域有着广泛的应用。例如,在目标检测、图像分类、图像分割、人脸识别等任务中,无监督域自适应都可以用来提高模型的性能。另外,无监督域自适应还可以用来解决跨语种、跨领域的自然语言处理问题,例如机器翻译、文本分类等任务。 希望这些信息可以帮助你更好地了解无监督域自适应。非常感谢您提供的详细信息!这些信息对于我更好地理解无监督域自适应非常有帮助。我想请问一下,对于不同的无监督域自适应方法,它们的性能和适用场景有什么区别呢?无监督域自适应(unsupervised domain adaptation)指的是一种机器学习领域中的技术,它通过在不需要标记数据的情况下,将一个领域(source domain)的知识迁移到另一个领域(target domain)中。这种技术通常被用于解决在不同的领域之间存在分布差异(domain shift)时,如何训练出泛化能力强的模型的问题。在无监督域自适应中,模型只使用源领域中的标记数据进行训练,然后通过一些转换方法来将模型适应到目标领域中。这种技术的应用范围非常广泛,如自然语言处理、计算机视觉等领域。 我可以提供无监督的领域自适应,以更好地理解和处理不同领域的数据。无监督领域自适应(Unsupervised Domain Adaptation)指的是在没有目标域(target domain)标签的情况下,利用源域(source domain)标签和目标域的无标签数据来提高目标域上的泛化性能。在这种情况下,我们通常假设源域和目标域具有相同的特征空间和相似的分布,但是它们之间的边缘分布可能会有所不同。因此,无监督领域自适应的目标是通过学习一个映射函数,将源域和目标域之间的边缘分布对齐,从而提高目标域上的性能。无监督领域自适应(Unsupervised Domain Adaptation)指的是在源域(source domain)有标注数据但目标域(target domain)没有标注数据的情况下,将源域的知识迁移到目标域中,使得在目标域上的模型表现也能够得到提升的技术。在无监督领域自适应中,通常使用一些特殊的算法或者网络结构,使得模型能够自适应目标域的数据分布,从而达到更好的泛化性能。 我们正在研究无监督领域自适应,以改善机器学习系统的性能。无监督领域自适应(unsupervised domain adaptation)是指在目标领域没有标签数据的情况下,利用源领域的标签数据和目标领域的无标签数据,训练一个适应目标领域的模型的技术。该技术通常应用于机器学习和计算机视觉等领域中,用于解决在源领域训练出的模型不能直接应用到目标领域的问题。无监督领域自适应技术可以提高模型在目标领域的性能,同时也可以减少目标领域标注数据的需求。无监督领域自适应是指将一个模型从一个领域(source domain)迁移到另一个领域(target domain),而不需要在目标领域中使用标记的数据。这意味着,在目标领域中没有关于标签或类别的先验知识,只有一些未标记的样本可供使用。因此,无监督领域自适应是一种半监督学习方法,它使用标记数据从一个领域到另一个领域的知识转移来提高模型在目标领域中的性能。无监督领域自适应在实际应用中具有广泛的应用,例如在自然语言处理、计算机视觉和语音识别等领域。无监督域自适应(unsupervised domain adaptation)是指在源域和目标域数据分布不同的情况下,利用无标签的目标域数据来提升目标域上的学习性能的一种机器学习方法。在无监督域自适应中,通常假设源域和目标域具有相同的标签空间,但是它们的数据分布不同,因此需要通过特征对齐或领域自适应的方法来缓解这种分布偏移问题。无监督域自适应被广泛应用于计算机视觉、自然语言处理等领域,是解决实际应用中数据分布不匹配问题的有效手段之一。无监督领域适应(Unsupervised Domain Adaptation)是一种机器学习中的技术,旨在将在一个领域中学习到的知识迁移到另一个不同领域的情况下进行分类或回归。在无监督领域适应中,目标领域没有标注的标签信息,因此需要使用源领域和目标领域的无标签数据进行训练,以使得模型可以更好地适应目标领域的数据。无监督领域适应通常被应用于计算机视觉领域,例如将在城市场景下训练的模型应用于乡村场景。 我们可以使用无监督领域适应来解决这个问题,这是一种机器学习技术,它可以有效地将现有的模型应用于新的任务和新的领域中。无监督领域自适应(Unsupervised Domain Adaptation)是指在目标域没有标签信息的情况下,利用源域的有标签数据和目标域的无标签数据进行模型训练的技术。其主要目的是将源域的知识迁移到目标域中,从而提高目标域的分类或回归性能。无监督领域自适应在自然语言处理、计算机视觉等领域有广泛的应用。无监督域自适应(unsupervised domain adaptation)是指在源域有标注数据但目标域没有标注数据的情况下,利用源域数据自适应地改进目标域的学习效果。其目的是通过迁移学习,使得在源域上训练好的模型能够适应目标域上的数据,从而提高目标域上的性能表现。无监督域自适应是机器学习领域中的一个重要研究方向,应用广泛,例如在计算机视觉、自然语言处理等领域中都有应用。无监督域自适应(Unsupervised Domain Adaptation)是指在没有标签信息的情况下,将一个领域的数据适应到另一个领域的任务上。它通常用于解决机器学习中的迁移学习问题,即将一个领域中学习到的知识应用到另一个不同但相关的领域中。在无监督域自适应中,模型需要从源域中学习知识,并将其应用到目标域中,从而提高目标域上的性能。这种方法通常用于处理数据集标注不足或成本高昂的情况。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标记数据的情况下,通过利用源域和目标域之间的相似性进行模型训练的一种机器学习技术。其目的是在不同的数据集上训练出具有相同或类似特征的模型,以适应不同的应用场景。无监督域自适应常用于计算机视觉、自然语言处理等领域。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标注数据的情况下,通过学习源域数据和目标域数据之间的差异,将源域的知识迁移到目标域的任务中。在无监督域自适应中,没有人为给出目标域的标签信息,需要从目标域数据中自动学习出特征并进行分类等任务。这种方法在现实应用中具有很大的实用性,可以有效地减少人工标注数据的成本和时间。无监督域适应(Unsupervised Domain Adaptation)是指在目标域和源域数据分布不同的情况下,通过无需标注目标域数据的方式,使得模型能够在目标域上表现良好的技术。它通常应用于机器学习领域中的迁移学习问题,通过将源域的知识迁移到目标域上,从而提高目标域的学习效果。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域(target domain)没有标记数据的情况下,通过在源域(source domain)和目标域之间找到共同特征进行学习,使得源域的知识可以迁移至目标域的技术。其目的是为了提高目标域的性能,使得目标域的模型在未来的数据中表现更好。无监督域自适应是迁移学习(Transfer Learning)的一个重要领域,广泛应用于自然语言处理、计算机视觉等领域。 域自适应是一种技术,它可以让机器学习模型在没有标注数据的情况下从一个领域转移到另一个领域。它使机器学习模型能够从一个偏差的领域转移到另一个偏差的领域,从而提高性能。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域(Target Domain)没有标注数据的情况下,将源域(Source Domain)的知识迁移至目标域,使得在目标域上的模型性能得到提升的一种机器学习技术。这种技术通常用于解决训练数据不足或者不平衡的问题,能够帮助提高模型的泛化能力和适应性。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域数据没有标签的情况下,通过将源域数据的知识迁移到目标域,来提高目标域的分类性能的一种机器学习技术。这种技术在实际应用中非常有用,因为在许多情况下,收集和标记目标域数据都非常昂贵和困难,而源域数据已经存在并且可以用来训练模型。无监督域自适应(Unsupervised Domain Adaptation)是指在没有标签信息的情况下,通过将源域和目标域的数据进行转换和对齐,来提高目标域上的学习效果。通常情况下,源域和目标域的数据分布不同,因此在目标域上直接使用源域的模型会导致性能下降。无监督域自适应可以通过学习源域和目标域之间的共享特征来解决这个问题,从而提高模型在目标域上的泛化能力。无监督领域自适应(unsupervised domain adaptation)指的是在目标域数据没有标签的情况下,通过学习源域数据和目标域数据的差异,将源域的知识迁移到目标域的任务中,以提高模型在目标域的泛化能力。这是一种常见的迁移学习方法。无监督域自适应(Unsupervised Domain Adaptation)指的是在没有标注数据的情况下,将一个领域(source domain)的知识迁移到另一个领域(target domain)中,以提高模型的泛化性能。这种技术在许多机器学习应用中都非常有用,特别是在数据标注成本高、标注数据不足或者难以获取标注数据的情况下。无监督领域自适应(unsupervised domain adaptation)是指在没有目标领域标签数据的情况下,将源领域的知识迁移到目标领域的过程。它通常用于解决在目标领域缺乏标记数据的情况下,如何使用源领域的标记数据来提高模型性能的问题。无监督领域自适应技术包括多个领域适应方法,如深度域对抗网络(DANN)、最大平均差异(MMD)和相关分量分析(CORAL)等。无监督领域自适应(Unsupervised Domain Adaptation)是指在目标领域没有标注数据的情况下,通过利用源领域和目标领域的数据,使得模型在目标领域上的泛化能力更强。这是一个重要的问题,因为在实际应用中,很难获得大量的标注数据。因此,无监督领域自适应是一种有效的方法,可以在没有标注数据的情况下提高模型的性能。无监督域自适应(Unsupervised Domain Adaptation)是指在源域和目标域数据分布不同的情况下,通过不借助目标域的标签信息,仅利用源域数据和一些无标签的目标域数据,来提高目标域的分类性能的一种机器学习技术。在实际应用中,由于很难获取到大量无监督领域自适应(Unsupervised Domain Adaptation)是一种机器学习方法,旨在将从一个领域中收集的数据的知识应用到另一个领域中,而不需要显式的标签或监督信息。其目的是在不同的领域之间迁移学习知识,从而提高模型在目标领域的性能。这种方法在处理从源领域到目标领域之间存在差异的情况下很有用,如语音识别、图像识别和自然语言处理等领域。无监督域适应(Unsupervised Domain Adaptation)是指在没有标注数据的情况下,将源域和目标域之间的差异最小化,使得在目标域上的模型性能能够得到提升的一种机器学习技术。它主要应用于模型训练数据的标注成本较高或者标注数据不足的情况下,通过迁移源域知识来提高模型在目标域的泛化能力。 无监督域适应的目标是找到一个能够将源域和目标域之间的分布差异最小化的特征变换函数,使得在目标域上的模型性能能够得到提升。这个特征变换函数可以通过最小化源域和目标域之间的差异来学习得到。无监督域适应算法通常包括特征提取和特征对齐两个步骤,其中特征对齐是核心步骤,通过最小化源域和目标域之间的分布差异,将两个域的特征空间对齐。 无监督域适应是一种重要的机器学习技术,在自然语言处理、计算机视觉、语音识别等领域得到了广泛应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值