#4614. problem B

题目描述

有两个点集 S , T S,T S,T ∀ x ∈ S , y ∈ T \quad \forall x \in S, y \in T xS,yT x , y x,y x,y 之间有 1 2 \frac{1}{2} 21 概率存在一条边。

现在任意从 S , T S,T S,T 中各随机挑选一个点,问这两个点之间的期望距离。

若不连通,则距离为 0 0 0

输出期望距离在模 P P P 域下的值,保证 P P P 是质数。

数据范围

对于 100 % 100\% 100% 的数据,保证 1 ≤ n , m ≤ 100 , 772001 ≤ p ≤ 1000000007 1 \le n,m \le 100, 772001 \le p \le 1000000007 1n,m100,772001p1000000007 ,保证p为质数。

题解

考场自闭题。

暴力的话可以看作从 S S S 中的 1 1 1 号点走到 T T T 中的 1 1 1 号点的最短路总和/方案数,即对于每一种方案去 b f s bfs bfs 一遍。

考虑 b f s bfs bfs 的过程,因为是二分图,所以第 i i i 层的点只会和第 i − 1 i-1 i1 层的点有连边。

所以用 d p dp dp 模拟 b f s bfs bfs 的过程,设 f i , j , k , 0 / 1 f_{i,j,k,0/1} fi,j,k,0/1 表示 S S S 中选了 i i i 个点, T T T 中选了 j j j 个点,最后一层有 k k k 个点,这 k k k 个点是 S / T S/T S/T 集合的方案数, g g g 是所有方案的最深深度的总和。

转移的时候判断一下选不选 T T T 中的 1 1 1 号点,顺便统计答案即可。

效率: O ( n 4 ) O(n^4) O(n4) ,注意卡常。

代码

#include <bits/stdc++.h>
using namespace std; const int N=105;
int n,m,P,f[N][N][N][2],g[N][N][N][2],p[N][N],c[N][N],s,h[N*N],d[N][N][N][2];
inline int X(int x){return x>=P?x-P:x;}
int K(int x,int y){
	int z=1;
	for (;y;y>>=1,x=1ll*x*x%P)
		if (y&1) z=1ll*z*x%P;
	return z;
}
int main(){
	scanf("%d%d%d",&n,&m,&P);if (n<m) swap(n,m);
	c[0][0]=f[1][0][1][0]=h[0]=1;
	for (int i=1;i<=n;i++){
		c[i][0]=1;
		for (int j=1;j<=i;j++)
			c[i][j]=X(c[i-1][j-1]+c[i-1][j]);
	}
	for (int i=1;i<=n;i++){
		p[i][1]=X(X(p[i-1][1]<<1)+1);
		for (int j=2;j<=n;j++)
			p[i][j]=1ll*p[i][j-1]*p[i][1]%P;
	}
	for (int i=0;i<=n;i++)
		for (int j=0;j<=n;j++)
			for (int k=0;k<=n;k++)
				d[i][j][k][0]=1ll*c[i][k]*p[j][k]%P,
				d[i][j][k][1]=1ll*c[i][k]*p[j][k+1]%P;
	for (int i=1;i<=n*m;i++) h[i]=X(h[i-1]<<1);m--;
	for (int i=1;i<=n;i++)
		for (int j=0;j<=m;j++){
			for (int w,k=1;k<=i;++k){
				w=p[k][1];
				for (int x=1;x+j<=m;++x)
					w=X(w+d[m-j][k][x][1]),
					f[i][j+x][x][1]=X(f[i][j+x][x][1]+1ll*d[m-j][k][x][0]*f[i][j][k][0]%P),
					g[i][j+x][x][1]=X(g[i][j+x][x][1]+1ll*d[m-j][k][x][0]*(g[i][j][k][0]+f[i][j][k][0])%P);
				s=X(s+1ll*w*h[(n-i)*(m-j+1)]%P*(g[i][j][k][0]+f[i][j][k][0])%P);
			}
			for (int k=1;k<=j;++k)
				for (int x=1;x+i<=n;++x)
					f[i+x][j][x][0]=X(f[i+x][j][x][0]+1ll*d[n-i][k][x][0]*f[i][j][k][1]%P),
					g[i+x][j][x][0]=X(g[i+x][j][x][0]+1ll*d[n-i][k][x][0]*(g[i][j][k][1]+f[i][j][k][1])%P);
		}
	printf("%lld\n",1ll*s*K(h[n*(m+1)],P-2)%P);return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值